Abstract

We investigate scattering of surface plasmon polaritons (SPPs) at a planar metal–dielectric interface by a dielectric nanocube embedded in the metal layer using finite element method-based simulations. The scattering characteristics of the embedded nanocube, such as the scattering and absorption cross sections, far-field scattering patterns, reflectance, and transmittance, are calculated as functions of the wavelength of the incident SPP waves in the visible range. The main features of the characteristics are explained in connection with the excitation of plasmonic eigenmodes of the embedded nanocube. The most efficient scattering into waves propagating away from the metal surface, i.e., the radiating modes, occurs when a dipolar-like plasmonic mode is excited, whose eigenfrequency can be tuned by changing the edge length of the nanocube.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Surface plasmon-polariton mediated light emission through thin metal films

Stephen Wedge and W. L. Barnes
Opt. Express 12(16) 3673-3685 (2004)

Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material

Muhammad Faryad, Anthony Shoji Hall, Greg D. Barber, Thomas E. Mallouk, and Akhlesh Lakhtakia
J. Opt. Soc. Am. B 29(4) 704-713 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006).
    [Crossref]
  2. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
    [Crossref] [PubMed]
  3. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
    [Crossref]
  4. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998).
    [Crossref]
  5. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
    [Crossref]
  6. E. Lee and C. Kim, “Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode,” Opt. Express 20, A740–A753 (2012).
    [Crossref] [PubMed]
  7. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [Crossref] [PubMed]
  8. I. Jeong, J. Kwon, C. Kim, and Y. J. Park, “Design and numerical analysis of surface plasmon-enhanced fin Ge-Si light-emitting diode,” Opt. Express 22, 5927–5936 (2014).
    [Crossref] [PubMed]
  9. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
    [Crossref] [PubMed]
  10. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005).
    [Crossref]
  11. Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
    [Crossref]
  12. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14, 10825–10830 (2006).
    [Crossref] [PubMed]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  14. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
    [Crossref]
  15. V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
    [Crossref] [PubMed]
  16. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  17. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
    [Crossref]
  18. COMSOL, Multiphysics Reference Guide for COMSOL 4.3 (COMSOL,2012).
  19. X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
    [Crossref]
  20. S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Optics 54, 477–481 (2015).
    [Crossref]
  21. G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
    [Crossref]
  22. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [Crossref]
  23. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
    [Crossref]
  24. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
    [Crossref] [PubMed]
  25. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [Crossref]
  26. F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
    [Crossref]
  27. V. Santhanam and R. P. Andres, “Microcontact printing of uniform nanoparticle arrays,” Nano Lett. 4, 41–44 (2004).
    [Crossref]
  28. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
    [Crossref]
  29. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
    [Crossref] [PubMed]
  30. H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
    [Crossref] [PubMed]
  31. J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
    [Crossref]
  32. L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
    [Crossref]
  33. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]

2015 (1)

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Optics 54, 477–481 (2015).
[Crossref]

2014 (1)

2013 (2)

X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
[Crossref]

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
[Crossref]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
[Crossref]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref] [PubMed]

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

2009 (3)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[Crossref] [PubMed]

2008 (1)

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

2007 (2)

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

2006 (5)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14, 10825–10830 (2006).
[Crossref] [PubMed]

2005 (1)

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005).
[Crossref]

2004 (2)

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

V. Santhanam and R. P. Andres, “Microcontact printing of uniform nanoparticle arrays,” Nano Lett. 4, 41–44 (2004).
[Crossref]

2003 (3)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
[Crossref]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998).
[Crossref]

1994 (2)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
[Crossref]

Aizpurua, J.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref] [PubMed]

Albrecht, M.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Albrektsen, O.

Andres, R. P.

V. Santhanam and R. P. Andres, “Microcontact printing of uniform nanoparticle arrays,” Nano Lett. 4, 41–44 (2004).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Babar, S.

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Optics 54, 477–481 (2015).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Berenger, J.-P.

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Bian, Y.

Boardman, A. D.

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
[Crossref]

Boatner, L. A.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
[Crossref]

Bolivar, P. H.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Bozhevolnyi, S. I.

Bratschitsch, R.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Budai, J. D.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
[Crossref]

Byeon, C. C.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998).
[Crossref]

Cao, L.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Cho, C.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Davis, C. C.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Feng, L.

X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
[Crossref]

Furno, M.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
[Crossref]

Green, M.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Greffet, J.-J.

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
[Crossref]

Hashimoto, K.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Hofmann, S.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
[Crossref]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref] [PubMed]

Hung, Y.-J.

Janke, C.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Jellison, G. E.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
[Crossref]

Jeong, B.-S.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
[Crossref]

Jeong, I.

Jia, J. G.

X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
[Crossref]

Jian, X.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
[Crossref]

Kajikawa, K.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005).
[Crossref]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998).
[Crossref]

Kim, B.-H.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Kim, C.

Kim, J.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Klieber, C.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Knittel, V.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Kraus, T.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

Kurz, H.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Kwon, J.

Kwon, M.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Lee, E.

Leitenstorfer, A.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Leo, K.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
[Crossref]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

Leong, E. S.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

Li, H.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
[Crossref]

Lin, Y.

X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
[Crossref]

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

Liu, H.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
[Crossref]

Lussem, B.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

Lüssem, B.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
[Crossref]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Maier, S. A.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006).
[Crossref]

Makarov, D.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Malaquin, L.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

Maradudin, A. A.

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
[Crossref]

Meerheim, R.

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
[Crossref]

Naraoka, R.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005).
[Crossref]

Nelson, K. A.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Nielsen, M. G.

Nordlander, P.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref] [PubMed]

Norton, D. P.

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

Okawa, H.

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005).
[Crossref]

Osgood, R. M.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Panoiu, N. C.

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Park, I.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Park, S.-J.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Park, Y. J.

Pellemans, H. P. M.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Pincemin, F.

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Pors, A.

Reineke, S.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

Reyes-Coronado, A.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref] [PubMed]

Riess, W.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

Rivas, J. G.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Santhanam, V.

V. Santhanam and R. P. Andres, “Microcontact printing of uniform nanoparticle arrays,” Nano Lett. 4, 41–44 (2004).
[Crossref]

Saxler, J.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

Schmid, H.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

Si, G.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

Smolyaninov, I. I.

Spencer, N. D.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Temnov, V. V.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Teng, J.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

Thomay, T.

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

Wang, B.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

Weaver, J. H.

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Optics 54, 477–481 (2015).
[Crossref]

Wei, H.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref] [PubMed]

Wolf, H.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

Wu, H.-C.

Xu, H.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref] [PubMed]

Xu, S.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
[Crossref]

Xu, W.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
[Crossref]

Yan, X. D.

X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
[Crossref]

Yang, P.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

Zhang, G.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

Zhao, X.

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Zheng, Z.

Zhou, T.

Zhou, X. W.

X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
[Crossref]

Zhu, J.

Zong, Y.

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

ACS Nano (2)

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4, 2649–2654 (2010).
[Crossref] [PubMed]

H. Liu, B. Wang, E. S. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139–3146 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref] [PubMed]

Appl. Optics (1)

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Optics 54, 477–481 (2015).
[Crossref]

Appl. Phys. Lett. (2)

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[Crossref]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010).
[Crossref]

Chem. Commun. (1)

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. 47, 3784–3786 (2011).
[Crossref]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006).
[Crossref]

J. Appl. Phys. (1)

G. E. Jellison, L. A. Boatner, J. D. Budai, B.-S. Jeong, and D. P. Norton, “Spectroscopic ellipsometry of thin film and bulk anatase (TiO2),” J. Appl. Phys. 93, 9537–9541 (2003).
[Crossref]

J. Comput. Phys. (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

J. Mater. Chem. A (1)

X. D. Yan, L. Feng, J. G. Jia, X. W. Zhou, and Y. Lin, “Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells,” J. Mater. Chem. A 1, 5347–5352 (2013).
[Crossref]

Nano Lett. (1)

V. Santhanam and R. P. Andres, “Microcontact printing of uniform nanoparticle arrays,” Nano Lett. 4, 41–44 (2004).
[Crossref]

Nat. Commun. (1)

V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, “Nanoparticle printing with single-particle resolution,” Nat. Nanotechnol. 2, 570–576 (2007).
[Crossref]

Nat. Photon. (1)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Nature (2)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005).
[Crossref]

Opt. Express (5)

Phys. Rev. B (4)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261–15275 (1994).
[Crossref]

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[Crossref]

L. Cao, N. C. Panoiu, and R. M. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B 75, 205401 (2007).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[Crossref]

COMSOL, Multiphysics Reference Guide for COMSOL 4.3 (COMSOL,2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagrams of the simulation structure showing a SPP mode (red) propagating from the left to the right along the x axis, and a TiO2 nanocube with a varying edge length (w = 60, 80, or 100 nm) embedded in the Ag layer. The structure is shown in three- (a) and two-dimensional (b) views. θ and φ represent the polar and azimuthal angles, respectively.

Fig. 2
Fig. 2

Ssca spectra of the embedded nanocube with w = 60, 80, or 100 nm as functions of λ.

Fig. 3
Fig. 3

Surface charge densities (σ) and field profiles of the 100-nm nanocube showing the characteristics of plasmonic modes. The σ distributions obtained from the scattering simulation are shown for the three Ssca peaks at (a) λ1 = 680 nm, (b) λ2 = 640 nm, and (c) λ3 = 540 nm, and those obtained from the eigenmode calculation are shown for (d) the dipolar-like mode (λ = 674 nm), (e) the 1st higher mode (λ = 634 nm), and (f) the 2nd higher mode (λ = 539 nm). The field profiles obtained from the scattering simulation are also shown for (g) Ex at λ1, (h) Ex at λ2, and (i) Ez at λ2. The results of the scattering simulation were captured when the volume integration of E x 2 in the nanocube was at its maximum. Adjustment of the color scales for clear visualization of the σ and field distributions in the interior of the nanocube faces resulted in color saturation in some areas on the edges for (c), (f), (g), (h), and (i).

Fig. 4
Fig. 4

Distributions of surface charge density (σ) on the faces of the nanocubes with w = 80 and 60 nm corresponding to the three Ssca peaks at (a) λ = 640 nm, (b) λ = 600 nm, and (c) λ = 520 nm, for w =80 nm, and (d) λ = 600 nm, (e) λ = 570 nm, and (f) λ = 500 nm, for w = 60 nm. All images were captured when the volume integration E x 2 in the nanocube was at its maximum. Adjustment of the color scales for clear visualization of the σ distributions in the interior of the nanocube faces resulted in color saturation in some areas on the edges for (c) and (f).

Fig. 5
Fig. 5

(a) Surface charge density (σ) of the 60-nm nanocube obtained from the scattering simulation for an additional peak in Ssca found at λ = 660 nm. (b) The σ distribution of the eigenmode found at λ = 675 nm. The Ex and Ez profiles obtained from the scattering simulation are shown in (c) and (d), respectively. All images were captured when the volume integration of E x 2 in the nanocube was at its maximum. In (c) and (d), adjustment of the color scales for clear visualization of overall field distributions resulted in color saturation in some areas on the edges.

Fig. 6
Fig. 6

Far-field scattering patterns for w = 100 nm when the dipolar-like (a), 1st higher (b), and 2nd higher (c) modes are excited by incident SPPs. In (d), the far-field scattering pattern for the additional Ssca peak observed at λ = 660 nm for w = 60 nm is shown. Directions of the far-field scattering are specified by the polar (θ, black lines) and azimuthal (φ, white lines) angles.

Fig. 7
Fig. 7

Sabs spectra of the embedded nanocube with w = 60, 80, or 100 nm as functions of λ.

Fig. 8
Fig. 8

(a) Spectra of reflectance (R, green) and transmittance (T, blue) compared with those of Ssca (black) of the nanocube for w = 60, 80, and 100 nm. (b) ||2 distribution, shown in log scale, in the plane at z = 1 nm normal to the z-axis at maximum reflectance (λ = 640 nm) for w = 100 nm. (c) Local field enhancement (||2/|0|2) in log scale on the surface of the Ag layer at λ = 680 nm for w = 60 nm.