Abstract

We demonstrate that the pump’s spatial input profile can provide additional degrees of freedom in tailoring at will the nonlinear dynamics and the ensuing spectral content of supercontinuum generation in highly multimoded optical fibers. Experiments and simulations carried out at 1550 nm indicate that the modal composition of the input beam can substantially alter the soliton fission process as well as the resulting Raman and dispersive wave generation that eventually lead to supercontinuum in such a multimode environment. Given the multitude of conceivable initial conditions, our results suggest that it is possible to pre-engineer the supercontinuum spectral content in a versatile manner.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths

Karen Marie Hilligsøe, Thomas Vestergaard Andersen, Henrik Nørgaard Paulsen, Carsten Krogh Nielsen, Klaus Mølmer, Søren Keiding, Rene Kristiansen, Kim Per Hansen, and Jakob Juul Larsen
Opt. Express 12(6) 1045-1054 (2004)

Spatiotemporal dynamics of multimode optical solitons

Logan G. Wright, William H. Renninger, Demetrios N. Christodoulides, and Frank W. Wise
Opt. Express 23(3) 3492-3506 (2015)

Generation of supercontinuum and its theoretical study in three-ring silica microstructured optical fibers

Debashri Ghosh, Samudra Roy, Mrinmay Pal, Atasi Pal, Shyamal K. Bhadra, John McCarthy, Henry Bookey, and Ajoy Kar
Appl. Opt. 48(31) G12-G20 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light, 3rd ed. (Springer, 2016).
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  3. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  5. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [Crossref] [PubMed]
  6. C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).
  7. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  8. J. van Weerdenburg, A. Velàzquez-Benitez, R. van Uden, P. Sillard, D. Molin, A. Amezcua-Correa, E. Antonio-Lopez, M. Kuschnerov, F. Huijskens, H. de Waardt, T. Koonen, R. Amezcua-Correa, and C. Okonkwo, “10 Spatial mode transmission using low differential mode delay 6-LP fiber using all-fiber photonic lanterns,” Opt. Express 23(19), 24759–24769 (2015).
    [Crossref] [PubMed]
  9. P. Sillard, D. Molin, M. Bigot-Astruc, K. D. Jongh, F. Achten, A. M. Velázquez-Benítez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
    [Crossref]
  10. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308–310 (1974).
    [Crossref]
  11. R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
    [Crossref]
  12. R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
    [Crossref]
  13. A. Hasegawa, “Self-confinement of multimode optical pulse in a glass fiber,” Opt. Lett. 5(10), 416–417 (1980).
    [Crossref] [PubMed]
  14. B. Crosignani and P. Di Porto, “Soliton propagation in multimode optical fibers,” Opt. Lett. 6(7), 329–330 (1981).
    [Crossref] [PubMed]
  15. A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).
  16. K. S. Chiang, “Stimulated Raman scattering in a multimode optical fiber: evolution of modes in Stokes waves,” Opt. Lett. 17(5), 352–354 (1992).
    [Crossref] [PubMed]
  17. N. B. Terry, T. G. Alley, and T. H. Russell, “An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers,” Opt. Express 15(26), 17509–17519 (2007).
    [Crossref] [PubMed]
  18. S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013).
    [Crossref]
  19. H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
    [Crossref]
  20. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fiber,” Optica 2(1), 14 (2015).
    [Crossref]
  21. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645 (2008).
    [Crossref]
  22. A. Picozzi, G. Millot, and S. Wabnitz, “Nonlinear optics: Nonlinear virtues of multimode fibre,” Nat. Photonics 9(5), 289–291 (2015).
    [Crossref]
  23. W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
    [Crossref] [PubMed]
  24. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
    [Crossref] [PubMed]
  25. B. Crosignani, A. Cutolo, and P. Di Porto, “Coupled-mode theory of nonlinear propagation in multimode and single-mode fibers: envelope solitons and self-confinement,” J. Opt. Soc. Am. 72(9), 1136–1141 (1982).
    [Crossref]
  26. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
    [Crossref]
  27. L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
    [Crossref] [PubMed]
  28. G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
    [Crossref] [PubMed]
  29. S. Longhi, “Modulational instability and space-time dynamics in nonlinear parabolic-index optical fibers,” Opt. Lett. 28(23), 2363–2365 (2003).
    [Crossref] [PubMed]
  30. K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
    [Crossref] [PubMed]
  31. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fiber,” ArXiv160302972 Phys. (2016).
  32. J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
    [Crossref] [PubMed]
  33. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 2), 036604 (2004).
    [Crossref] [PubMed]
  34. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
    [Crossref]
  35. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer Science & Business Media, 2012).
  36. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
    [Crossref]

2016 (4)

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

P. Sillard, D. Molin, M. Bigot-Astruc, K. D. Jongh, F. Achten, A. M. Velázquez-Benítez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
[Crossref]

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref] [PubMed]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (1)

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

2013 (4)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
[Crossref] [PubMed]

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

2012 (1)

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

2008 (2)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2004 (2)

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[Crossref] [PubMed]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 2), 036604 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2000 (1)

1992 (1)

1988 (1)

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).

1982 (2)

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

B. Crosignani, A. Cutolo, and P. Di Porto, “Coupled-mode theory of nonlinear propagation in multimode and single-mode fibers: envelope solitons and self-confinement,” J. Opt. Soc. Am. 72(9), 1136–1141 (1982).
[Crossref]

1981 (1)

1980 (1)

1975 (1)

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
[Crossref]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308–310 (1974).
[Crossref]

Achten, F.

Agrawal, G. P.

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalization of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Alley, T. G.

Amezcua Correa, R.

Amezcua-Correa, A.

Amezcua-Correa, R.

An, N.

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

Andreasen, J.

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

Antonio Lopez, J.

Antonio-Lopez, E.

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308–310 (1974).
[Crossref]

Barthélémy, A.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Bendahmane, A.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Biancalana, F.

Bigot-Astruc, M.

Birks, T.

Bjorkholm, J.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308–310 (1974).
[Crossref]

Cantrell, C. D.

Cao, K.

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

Chen, Y.

Chiang, K. S.

Christodoulides, D.

Christodoulides, D. N.

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
[Crossref] [PubMed]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref] [PubMed]

Cockerill, T.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couderc, V.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Crosignani, B.

Cutolo, A.

Dahan, M.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

de Waardt, H.

Demas, J.

Di Porto, P.

Dianov, E. M.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eftekhar, M. A.

Essiambre, R.-J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Foster, I.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Gaither, K.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Ge, T.

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Grimshaw, A.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Grudinin, A. B.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).

Hasegawa, A.

Hazlewood, V.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Hollenbeck, D.

Horak, P.

Huijskens, F.

Joly, N.

Jongh, K. D.

Khaidarov, D. V.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).

Knight, J.

Knight, J. C.

Kolesik, M.

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 2), 036604 (2004).
[Crossref] [PubMed]

Koonen, T.

Korbkin, D. V.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).

Krupa, K.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Kuschnerov, M.

Lathrop, S.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Li, S.

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

Lifka, D.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Longhi, S.

Lopez-Galmiche, G.

Mafi, A.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Millot, G.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

A. Picozzi, G. Millot, and S. Wabnitz, “Nonlinear optics: Nonlinear virtues of multimode fibre,” Nat. Photonics 9(5), 289–291 (2015).
[Crossref]

Molin, D.

Moloney, J. V.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 2), 036604 (2004).
[Crossref] [PubMed]

Mumtaz, S.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Okonkwo, C.

Okonkwo, C. M.

Peterson, G. D.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Picozzi, A.

A. Picozzi, G. Millot, and S. Wabnitz, “Nonlinear optics: Nonlinear virtues of multimode fibre,” Nat. Photonics 9(5), 289–291 (2015).
[Crossref]

Poletti, F.

Pourbeyram, H.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Prokhorov, A. M.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).

Ramachandran, S.

Ranka, J. K.

Renninger, W. H.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Rishøj, L.

Roskies, R.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Russell, P.

Russell, T. H.

Sanjabi Eznaveh, Z.

Scott, J. R.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Shalaby, B. M.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Sillard, P.

Steinvurzel, P.

Stentz, A. J.

Stolen, R.

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
[Crossref]

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308–310 (1974).
[Crossref]

Stone, J. M.

Sun, C.

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

Tai, B.

Terry, N. B.

Tonello, A.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Towns, J.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

van Uden, R.

van Weerdenburg, J.

Velázquez-Benítez, A. M.

Velàzquez-Benitez, A.

Wabnitz, S.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref] [PubMed]

A. Picozzi, G. Millot, and S. Wabnitz, “Nonlinear optics: Nonlinear virtues of multimode fibre,” Nat. Photonics 9(5), 289–291 (2015).
[Crossref]

Wadsworth, W.

Wang, Z.

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

Wilkins-Diehr, N.

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

Windeler, R. S.

Wise, F.

Wise, F. W.

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
[Crossref] [PubMed]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref] [PubMed]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
[Crossref] [PubMed]

Wright, L. G.

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. Amezcua Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41(11), 2553–2556 (2016).
[Crossref] [PubMed]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23(3), 3492–3506 (2015).
[Crossref] [PubMed]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref] [PubMed]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Appl. Phys. Lett. (2)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308–310 (1974).
[Crossref]

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Comput. Sci. Eng. (1)

J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng. 16(5), 62–74 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11(3), 100–103 (1975).
[Crossref]

R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982).
[Crossref]

IEEE Photonics J. (1)

C. Sun, T. Ge, S. Li, N. An, K. Cao, and Z. Wang, “53.3 W visible-waveband extra high power supercontinuum all-fiber laser,” IEEE Photonics J. 8, 1–7 (2016).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4, 1719 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Picozzi, G. Millot, and S. Wabnitz, “Nonlinear optics: Nonlinear virtues of multimode fibre,” Nat. Photonics 9(5), 289–291 (2015).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Optica (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3 Pt 2), 036604 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref] [PubMed]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-Imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sov. J. Exp. Theor. Phys. Lett. (1)

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, and D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” Sov. J. Exp. Theor. Phys. Lett. 47, 356 (1988).

Other (3)

R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light, 3rd ed. (Springer, 2016).

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fiber,” ArXiv160302972 Phys. (2016).

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer Science & Business Media, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Energy distribution among the LPlm modes of a parabolic fiber when excited on-axis. In this case, only the LP0m modes are populated with the fundamental mode taking most of the energy. (b) Modal population when the system is excited off-axis. For this input, considerable energy resides in the LP1m set.

Fig. 2
Fig. 2

(a) Evolution of the supercontinuum spectrum in a 20 cm long parabolic MMF when the pulse energy is 150 nJ for (a) an on-axis excitation (b) off-axis input (offset by 10 µm). In all cases three stages are apparent: (i) initial spectral broadening, (ii) soliton fission, and (iii) soliton and dispersive wave propagation. The respective distances where soliton fission occurs are also shown. In (b) the circles denote the onset of the first three GPI sidebands. The pump wavelength is 1550 nm.

Fig. 3
Fig. 3

Comparison of the supercontinuum spectra features produced in an anomalously dispersive parabolic MMF for on-axis (blue) versus off-axis (red) excitation conditions. The propagation distance is 20 cm and the pulse width is 500 fs. All other parameters are the same as Fig. 2.

Fig. 4
Fig. 4

(a) Resulting temporal features after 20 cm in a parabolic MMF when excited on axis. (b) Temporal evolution of the initial 500 fs pulse (150 nJ) corresponding to (a). The emergence of slow solitons is apparent. (c) and (d) Same as in (a) and (b), respectively, for off-axis excitation. (e) The spatial intensity profile and its x-cross section corresponding to the slowest dominant soliton at the end of the fiber, when illuminated with an on-axis Gaussian beam. (f) Same as in (e) for off-axis launching conditions, where the soliton-beam experiences transverse oscillations during propagation.

Fig. 5
Fig. 5

Experimentally measured (a) NIR and (b) visible supercontinuum spectrum for on-axis excitation together with generated transverse output intensity profiles after 1 m of propagation. (c) and (d), Same as in (a) and (b) for an off-axis excitation. In all cases, each division represents a 10 dB variation. The scale bars in the insets represent 20 µm.

Fig. 6
Fig. 6

Generated (a) NIR and (b) visible portion of the spectrum when the fiber is excited by a ring beam. Same as in (c) and (d) when using a two-spot excitation. Each division in (a) and (c) represents a 20 dB differential while in (b) and (d) a 10 dB variation.

Fig. 7
Fig. 7

Experimentally measured NIR and visible supercontinuum spectra for four different initial spatial conditions together with generated transverse output intensity profiles after 1m of propagation. In all cases the pulse energy is 150 nJ. In all cases, each division represents a 10 dB variation. The scale bars in the insets represent 20 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z E ( k ,ω,z)=i k z E ( k ,ω,z)+ i ω 2 2 ε 0 c 2 k z P ( k ,ω,z) ω 2ε c 0 2 k z J ( k ,ω,z).