Abstract

We report a fiber laser noise reduction method by locking it to an actively stabilized optical delay line, specifically a fiber-based Mach–Zehnder interferometer with a 10 km optical fiber spool. The fiber spool is used to achieve large arm imbalance. The heterodyne signal of the two arms converts the laser noise from the optical domain to several megahertz, and it is used in laser noise reduction by a phase-locked loop. An additional phase-locked loop is induced in the system to compensate the phase noise due to environmentally induced length fluctuations of the optical fiber spool. A major advantage of this structure is the efficient reduction of out-of-loop frequency noise, particularly at low Fourier frequency. The frequency noise reaches −30 dBc/Hz at 1 Hz, which is reduced by more than 90 dB compared with that of the laser in its free-running state.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line

Fabien Kéfélian, Haifeng Jiang, Pierre Lemonde, and Giorgio Santarelli
Opt. Lett. 34(7) 914-916 (2009)

Subhertz linewidth laser by locking to a fiber delay line

Jing Dong, Yongqi Hu, Junchao Huang, Meifeng Ye, Qiuzhi Qu, Tang Li, and Liang Liu
Appl. Opt. 54(5) 1152-1156 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
    [Crossref] [PubMed]
  2. Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
    [Crossref]
  3. R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
    [Crossref]
  4. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [Crossref] [PubMed]
  5. N. Newbury, P. Williams, and W. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32, 3056–3058 (2007).
    [Crossref] [PubMed]
  6. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18, 16102–16111 (2010).
    [Crossref] [PubMed]
  7. M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express 19, 16498–16507 (2011).
    [Crossref] [PubMed]
  8. O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20, 23518–23526 (2012).
    [Crossref] [PubMed]
  9. D. Li, D. Hou, E. Hu, and J Zhao, “Phase conjugation frequency dissemination based on harmonics of optical comb at 10−17 instability level,” Opt. Lett. 39, 5058–5061 (2014).
    [Crossref] [PubMed]
  10. D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
    [Crossref]
  11. F. Stefani, O. Lopez, A. Bercy, W.-K. Lee, C. Chardonnet, G. Santarelli, P.-E. Pottie, and A. Amy-Klein, “Tackling the limits of optical fiber links,” J. Opt. Soc. Am. B 32, 787–797 (2015).
    [Crossref]
  12. K.B. MacAdam, A. Steinbach, and Carl Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992)
    [Crossref]
  13. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  14. A. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. Foreman, M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10–15,” Opt. lett. 32, 641–643 (2007).
    [Crossref] [PubMed]
  15. S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
    [Crossref]
  16. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
    [Crossref]
  17. H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155, 180–186 (1998).
    [Crossref]
  18. R. Scott, C. Langrock, and B. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
    [Crossref]
  19. D. Hou, C.-C. Lee, Z. Yang, and ST.R. chibli, “Timing jitter characterization of mode-locked lasers with <1zs/âĂć Hz resolution using a simple optical heterodyne technique,” Opt. Lett. 40, 2985–2988 (2015).
    [Crossref] [PubMed]
  20. Y. T. Chen, “Use of single-mode optical fiber in the stabilization of laser frequency,” Appl. Opt. 28, 2017–2021 (1989).
    [Crossref] [PubMed]
  21. G. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27, 1114–1116 (2002).
    [Crossref]
  22. K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
    [Crossref]
  23. B. S. Sheard, M. B. Gray, and D. E. McClelland, “High-bandwidth laser frequency stabilization to a fiber-optic delay line,” Appl. Opt. 45, 8491–8499 (2006).
    [Crossref] [PubMed]
  24. F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34, 914–916 (2009).
    [Crossref] [PubMed]
  25. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18, 3284–3297 (2010).
    [Crossref] [PubMed]
  26. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. Hsu, and M. B. Gray, “Frequency stabilization for space-based missions using optical fiber interferometry,” Opt. Lett. 38, 278–280 (2013).
    [Crossref] [PubMed]
  27. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett. 39, 1752–1755 (2014).
    [Crossref] [PubMed]
  28. J. Dong, Y. Hu, J. Huang, M. Ye, Q. Qu, T. Li, and L. Liu, “Subhertz linewidth laser by locking to a fiber delay line,” Appl. Opt. 54, 1152–1156 (2015).
    [Crossref] [PubMed]

2015 (5)

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

F. Stefani, O. Lopez, A. Bercy, W.-K. Lee, C. Chardonnet, G. Santarelli, P.-E. Pottie, and A. Amy-Klein, “Tackling the limits of optical fiber links,” J. Opt. Soc. Am. B 32, 787–797 (2015).
[Crossref]

D. Hou, C.-C. Lee, Z. Yang, and ST.R. chibli, “Timing jitter characterization of mode-locked lasers with <1zs/âĂć Hz resolution using a simple optical heterodyne technique,” Opt. Lett. 40, 2985–2988 (2015).
[Crossref] [PubMed]

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

J. Dong, Y. Hu, J. Huang, M. Ye, Q. Qu, T. Li, and L. Liu, “Subhertz linewidth laser by locking to a fiber delay line,” Appl. Opt. 54, 1152–1156 (2015).
[Crossref] [PubMed]

2014 (4)

T. G. McRae, S. Ngo, D. A. Shaddock, M. T. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett. 39, 1752–1755 (2014).
[Crossref] [PubMed]

D. Li, D. Hou, E. Hu, and J Zhao, “Phase conjugation frequency dissemination based on harmonics of optical comb at 10−17 instability level,” Opt. Lett. 39, 5058–5061 (2014).
[Crossref] [PubMed]

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
[Crossref]

2013 (1)

2012 (2)

O. Lopez, A. Haboucha, B. Chanteau, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the internet fiber network,” Opt. Express 20, 23518–23526 (2012).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

2011 (2)

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express 19, 16498–16507 (2011).
[Crossref] [PubMed]

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (1)

S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
[Crossref]

2007 (2)

2006 (1)

2002 (1)

2001 (1)

R. Scott, C. Langrock, and B. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

1998 (1)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155, 180–186 (1998).
[Crossref]

1994 (1)

1992 (1)

K.B. MacAdam, A. Steinbach, and Carl Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992)
[Crossref]

1989 (1)

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Adhikari, R. X.

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
[Crossref]

Amy-Klein, A.

Bercy, A.

Bertacco, E.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Billowes, J.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Bissell, M.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Blatt, S.

Boyd, M.

Budincevic, I.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Calonico, D.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Calosso, C.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Chanteau, B.

Chardonnet, C.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Chen, Y. T.

chibli, ST.R.

Clairon, A.

Clivati, C.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Cocolios, T.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Costanzo, G.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Cranch, G.

de Groote, R.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Dong, J.

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Farooq Smith, G.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Fedosseev, V.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Flanagan, K.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Foreman, S.

Fox, R.

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Franchoo, S.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Frittelli, M.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Fujieda, M.

Gill, P.

S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
[Crossref]

Godone, A.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Gray, M. B.

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Grosche, G.

Haboucha, A.

Hachisu, H.

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Hall, J. L.

L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref] [PubMed]

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Heylen, H.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Hou, D.

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hsu, M. T.

Hu, E.

Hu, Y.

Huang, J.

Huang, X.

Ido, T.

Jiang, H.

Jiang, Y.

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Jung, K.

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

Jungner, P.

Kaivola, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155, 180–186 (1998).
[Crossref]

Kéfélian, F.

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Kim, J.

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

Kolner, B.

R. Scott, C. Langrock, and B. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kumagai, M.

Langrock, C.

R. Scott, C. Langrock, and B. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

Lee, C.-C.

Lee, W.-K.

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Lemke, N.

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Lemonde, P.

Levi, F.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Li, D.

Li, R.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Li, T.

Liu, L.

Lopez, O.

Ludlow, A.

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

A. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. Foreman, M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10–15,” Opt. lett. 32, 641–643 (2007).
[Crossref] [PubMed]

Ludvigsen, H.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155, 180–186 (1998).
[Crossref]

Lynch, K. M.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Ma, L.-S.

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref] [PubMed]

MacAdam, K.B.

K.B. MacAdam, A. Steinbach, and Carl Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992)
[Crossref]

Marsh, B. A.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Martin, M.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

McClelland, D. E.

McRae, T. G.

Millo, J.

S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
[Crossref]

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Mura, A.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Nagano, S.

Newbury, N.

Neyens, G.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Ngo, S.

Notcutt, M.

Oates, C.

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Oxborrow, M.

S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
[Crossref]

Poli, N.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Pottie, P.-E.

Pugla, S.

S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
[Crossref]

Qu, Q.

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Rossel, R. E.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Rothe, S.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Ruiz, R. G.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Santarelli, G.

Schnatz, H.

Scott, R.

R. Scott, C. Langrock, and B. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

Shaddock, D. A.

Sheard, B. S.

Sherman, J.

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Stefani, F.

Steinbach, A.

K.B. MacAdam, A. Steinbach, and Carl Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992)
[Crossref]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Stroke, H. H.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Sutyrin, D.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Swann, W.

Terra, O.

Tino, G.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Tossavainen, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155, 180–186 (1998).
[Crossref]

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Webster, S.

S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
[Crossref]

Wendt, K. D. A.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Wieman, Carl

K.B. MacAdam, A. Steinbach, and Carl Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992)
[Crossref]

Wilkins, S. G.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Williams, P.

Yamaguchi, A.

Yang, X.

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Yang, Z.

Ye, J.

Ye, M.

Zanon-Willette, T.

Zhao, J

Zucco, ME.

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

Am. J. Phys. (1)

K.B. MacAdam, A. Steinbach, and Carl Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992)
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (2)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

D. Calonico, E. Bertacco, C. Calosso, C. Clivati, G. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. Sutyrin, G. Tino, ME. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” Appl. Phys. B 117, 979–986 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scott, C. Langrock, and B. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye, “A sub-40-mhz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L.-S. Ma, and C. Oates, “Making optical atomic clocks more stable with 10-16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Opt. Commun. (1)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155, 180–186 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

T. G. McRae, S. Ngo, D. A. Shaddock, M. T. Hsu, and M. B. Gray, “Frequency stabilization for space-based missions using optical fiber interferometry,” Opt. Lett. 38, 278–280 (2013).
[Crossref] [PubMed]

T. G. McRae, S. Ngo, D. A. Shaddock, M. T. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett. 39, 1752–1755 (2014).
[Crossref] [PubMed]

F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34, 914–916 (2009).
[Crossref] [PubMed]

D. Hou, C.-C. Lee, Z. Yang, and ST.R. chibli, “Timing jitter characterization of mode-locked lasers with <1zs/âĂć Hz resolution using a simple optical heterodyne technique,” Opt. Lett. 40, 2985–2988 (2015).
[Crossref] [PubMed]

G. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27, 1114–1116 (2002).
[Crossref]

D. Li, D. Hou, E. Hu, and J Zhao, “Phase conjugation frequency dissemination based on harmonics of optical comb at 10−17 instability level,” Opt. Lett. 39, 5058–5061 (2014).
[Crossref] [PubMed]

L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref] [PubMed]

N. Newbury, P. Williams, and W. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32, 3056–3058 (2007).
[Crossref] [PubMed]

A. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. Foreman, M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10–15,” Opt. lett. 32, 641–643 (2007).
[Crossref] [PubMed]

Phys. Rev. A (1)

S. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008).
[Crossref]

Phys. Rev. Lett. (1)

R. de Groote, I. Budinčević, J. Billowes, M. Bissell, T. Cocolios, G. Farooq Smith, V. Fedosseev, K. Flanagan, S. Franchoo, R. G. Ruiz, H. Heylen, R. Li, K. M. Lynch, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, and X. Yang, “Use of a continuous wave laser and pockels cell for sensitive high-resolution collinear resonance ionization spectroscopy,” Phys. Rev. Lett. 115, 132501 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
[Crossref]

Sci. Rep. (1)

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transfer function of the fiber interferometer.

Fig. 2
Fig. 2

Noise analysis of the optical delay line system.

Fig. 3
Fig. 3

Frequency noise reduction scheme of the CW laser. CW: CW laser, AOM: acousto-optic modulator, AMP: amplifier, VCO: voltage-controlled oscillator, PI-Con: PI controller, BPF: band-pass filter, LPF: low-pass filter, Frq.Source: frequency source, Frq. Analyzer: frequency analyzer, P.C.: polarization controller, and PD: photodetector. The couplers are all polarization insensitive. The signal detected by the photodetector after Coupler-2 is used to stabilize the interferometer and reduce the laser noise. The signal detected by the photodiode after coupler-4 is used to compensate environmentally induced phase fluctuations in the fiber spool and monitor the out-of-loop phase noise of the laser.

Fig. 4
Fig. 4

Out-of-loop frequency noise of the stabilized laser. The noise floor is in-loop measurement without the 10 km fiber spool.

Fig. 5
Fig. 5

Test of the laser stabilization performance with two sets of identical stabilization systems. The isolator (iso) is used to reduce the back-reflection signal. The fiber after the coupler (cp-1) is used for de-correlation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ e r r ( f ) / ν o p t ( f ) = H M Z I ( f ) = 1 e j 2 π f τ j f ( r a d / H z ) ,

Metrics