Abstract

We present the first angle resolved measurements of extraordinary optical transmission (EOT) through hole array gratings in a gold film. Varying the lattice spacing of the arrays and looking at higher diffraction orders, we retrieve the angular emission pattern of the constituent holes with better signal to noise ratio than with single-hole experiments. We present a method to determine separately the angular dependence of the direct and resonant contribution to EOT by using the spectral features of the diffraction orders together with an established model. The comparison of our results with the known angular transmission of a single hole in a metal film yields a good agreement for s-polarized light. Deviations are found for illumination with p-polarized light and we address the discrepancy with Coupled Mode Model calculations and Finite Difference Time Domain simulations. These measured deviations are currently not fully understood.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film

Pramodha Marthandam and Reuven Gordon
Opt. Express 15(20) 12995-13002 (2007)

Extraordinary optical transmission through incommensurate metal hole arrays in the terahertz region

Yoji Jimba, Keisuke Takano, Masanori Hangyo, and Hiroshi Miyazaki
J. Opt. Soc. Am. B 30(9) 2476-2482 (2013)

Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays

Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J. L. Carson
Opt. Express 18(21) 22255-22270 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
    [Crossref] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  4. P. Zijlstra and M. Orrit, “Single metal nanoparticles: Optical detection, spectroscopy and applications,” Rep. Prog. Phys 74, 106401 (2011).
    [Crossref]
  5. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys 82, 729–787 (2010).
    [Crossref]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  7. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
    [Crossref]
  8. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
    [Crossref]
  9. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
    [Crossref]
  10. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
    [Crossref] [PubMed]
  11. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J.-L. Pelouard, “Angle-resolved transmission measurements through anisotropic two-dimensional plasmonic crystals,” Opt. Lett. 33, 165–167 (2008).
    [Crossref] [PubMed]
  12. M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
    [Crossref]
  13. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [Crossref] [PubMed]
  14. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [Crossref] [PubMed]
  15. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
    [Crossref]
  16. N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
    [Crossref] [PubMed]
  17. H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A 27, 2542–2550 (2010).
    [Crossref]
  18. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
    [Crossref] [PubMed]
  19. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. Online Archive (Prola) 66, 163–182 (1944).
  20. J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
    [Crossref] [PubMed]
  21. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys 10, 105017 (2008).
    [Crossref]
  22. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
    [Crossref] [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]

2012 (3)

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

2011 (1)

P. Zijlstra and M. Orrit, “Single metal nanoparticles: Optical detection, spectroscopy and applications,” Rep. Prog. Phys 74, 106401 (2011).
[Crossref]

2010 (4)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys 82, 729–787 (2010).
[Crossref]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A 27, 2542–2550 (2010).
[Crossref]

2008 (5)

C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J.-L. Pelouard, “Angle-resolved transmission measurements through anisotropic two-dimensional plasmonic crystals,” Opt. Lett. 33, 165–167 (2008).
[Crossref] [PubMed]

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[Crossref]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys 10, 105017 (2008).
[Crossref]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[Crossref] [PubMed]

2006 (1)

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

2004 (2)

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

2000 (1)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. Online Archive (Prola) 66, 163–182 (1944).

Alegret, J.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

Altug, H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Bardou, N.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[Crossref]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. Online Archive (Prola) 66, 163–182 (1944).

Billaudeau, C.

Bravo-Abad, J.

Brucoli, G.

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys 10, 105017 (2008).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Collin, S.

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Cuche, A.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

de Abajo, F. J. G.

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

de Dood, M. J. A.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[Crossref]

de León-Pérez, F.

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys 10, 105017 (2008).
[Crossref]

de Léon-Pérez, F.

Degiron, A.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

Driessen, E. F. C.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[Crossref]

Ebbesen, T. W.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys 82, 729–787 (2010).
[Crossref]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref] [PubMed]

Feber, B. L.

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys 82, 729–787 (2010).
[Crossref]

García-Vidal, F. J.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[Crossref] [PubMed]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys 10, 105017 (2008).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Genet, C.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[Crossref]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref] [PubMed]

Krijger, T. L.

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

Kuipers, L.

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys 82, 729–787 (2010).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref] [PubMed]

Lalanne, P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A 27, 2542–2550 (2010).
[Crossref]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

Laux, E.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

Lezec, H. J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Liu, H.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

H. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A 27, 2542–2550 (2010).
[Crossref]

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys 82, 729–787 (2010).
[Crossref]

Martín-Moreno, L.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571–9579 (2008).
[Crossref] [PubMed]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys 10, 105017 (2008).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

Moreno, L. M.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

O’Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

Orrit, M.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: Optical detection, spectroscopy and applications,” Rep. Prog. Phys 74, 106401 (2011).
[Crossref]

Pardo, F.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[Crossref]

Pelouard, J.-L.

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

Pérez, d. L.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Przybilla, F.

Rétif, C.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

Rotenberg, N.

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

Sauvan, C.

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

Smiet, C. B.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

Spasenovic, M.

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

Stolwijk, D.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[Crossref]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

van Beijnum, F.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

van der Molen, K. L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

van Exter, M. P.

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[Crossref]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Yanik, A. A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Yi, J. M.

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: Optical detection, spectroscopy and applications,” Rep. Prog. Phys 74, 106401 (2011).
[Crossref]

Appl. Phys. Lett. (3)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569–1571 (2000).
[Crossref]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10, 4962–4969 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[Crossref]

Nature (4)

F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[Crossref] [PubMed]

New J. Phys (1)

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys 10, 105017 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (4)

J. M. Yi, A. Cuche, d. L. Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. M. Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[Crossref] [PubMed]

N. Rotenberg, M. Spasenović, T. L. Krijger, B. L. Feber, F. J. G. de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett. 108, 127402 (2012).
[Crossref] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref] [PubMed]

Phys. Rev. Online Archive (Prola) (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. Online Archive (Prola) 66, 163–182 (1944).

Rep. Prog. Phys (1)

P. Zijlstra and M. Orrit, “Single metal nanoparticles: Optical detection, spectroscopy and applications,” Rep. Prog. Phys 74, 106401 (2011).
[Crossref]

Rev. Mod. Phys (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys 82, 729–787 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The goniometric setup used in the experiments. The sample is illuminated at normal incidence (NAin = 0:01) with a fiber-coupled white-light source. A second telescope (NAout = 0:03) scans, on a rotating stage, a semi-circle in the xz plane and collects the transmitted light at scattering angle θ. Focal lengths are f1 = 50 mm, f2 = 75 mm, f3 = 150 mm. Polarizers allow polarization-resolved study of the transmission. The false color plot reports the transmitted intensity I (θ; λ) for the q = 9 array. The inset shows a detail of SEM image of sample with q = 2. (b) Cross-cuts of I (θ; λ) at fixed λ = 735 nm, i.e. along the green dashed arc indicated in a), for all the measured spacings q. (c) Transmission spectrum for the 1st diffraction order of the 9a0 array extracted along the white dashed line in a). The data are fitted with the model in Eq. (1). From the calculated parameters it is possible to separate the direct transmission |t|2 (green dotted lines) and the resonant contribution | S P | 2 = | s / ( u 1 σ ) | 2 (red dotted lines).

Fig. 2
Fig. 2

Angular dependence of the parameters |t(θ)|2 (red symbols) and |s(θ)|2 (blue symbols), derived by fitting the model in Eq. (1) to the transmission diffraction orders measured for p-polarization on the air side of hole-arrays. Data from different arrays are normalized to the value for first orders; note the excellent consistency of parameters from arrays of different q-values. The excess intensity at θ = 0 is due to incomplete absorption of light passing through the gold film. We report for comparison Ip (θ) curve from Eq. (2) in solid line and, in dotted line, the curve including the correction with factor cos(θ)−1 computed in Sec. 3 and discussed in Sec. 5. The latter is in excellent agreement with FDTD calculations, shown with yellow and cyan symbols, for the power in each diffraction order.

Fig. 3
Fig. 3

Peak values for the resonance in the transmission spectra at different diffraction orders obtained with illumination with s-polarized light (peak position around 750 nm, shown in the inset) for detection on the air side. The solid curve shows the single-hole diffraction obtained with Eq. (3), while the dotted curve shows this result after correction by a factor cos(θ)−1 computed in Sec. 3 and discussed in Sec. 5. The latter curve overlaps with both the experimental data, as expected, and with the results of FDTD calculations of the power in each diffraction order, shown with yellow and cyan symbols.

Fig. 4
Fig. 4

Distribution of the transmitted power as a function of angle for different values of Re(ϵm), calculated with both CMM model and FDTD; for the latter we show Tn/T1, transmission per diffraction order normalized by the first diffraction order. Panel (a) is for p-polarization, while panel (b) renders the results for s-polarization.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( q , λ ) = q 2 | t ( λ ) + s ( λ ) u 1 ( q ) σ | 2
I p ( θ ) I p ( 0 ) = | 1 z s | 2 cos 2 ( θ ) | cos ( θ ) + z s | 2 4 J 1   2 ( Φ ) Φ 2 | 1 z s | 2 cos 2 ( θ ) | cos ( θ ) + z s | 2 ( 1 Φ 2 4 )
I s ( θ ) I s ( 0 ) = | 1 + z s | 2 cos 2 ( θ ) | 1 + z s cos ( θ ) | 2 4 J 1   2 ( Φ ) ( 1 Φ 2 / u 2 ) 2 | 1 + z s | 2 cos 2 ( θ ) | 1 + z s cos ( θ ) | 2 ( 1 ( 3 4 2 u 2 ) Φ 2 )