Abstract

We experimentally demonstrate the first polymer optical fiber Bragg grating inscribed with only one krypton fluoride laser pulse. The device has been recorded in a single-mode poly(methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One laser pulse with a duration of 15 ns, which provide energy density of 974 mJ/cm2, is adequate to introduce a refractive index change of 0.74×10−4 in the fiber core. After the exposure, the reflectivity of the grating increases for a few minutes following a second order exponential saturation. The produced Bragg grating structure rejects 17.9 dB transmitted power, thus providing 98.4% reflectivity, which is well suited for sensing applications. In addition, we report the importance of the fiber thermal treatment before or after the inscription, showing its effects on the lifetime and quality of the grating structures. Optimizing the irradiation conditions and the material chemical composition, a higher refractive index change in the fiber core is feasible. This demonstration significantly improves the potential for commercial exploitation of the technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds

Ricardo Oliveira, Lúcia Bilro, and Rogério Nogueira
Opt. Express 23(8) 10181-10187 (2015)

Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber

Xuehao Hu, Chi-Fung Jeff Pun, Hwa-Yaw Tam, Patrice Mégret, and Christophe Caucheteur
Opt. Express 22(15) 18807-18817 (2014)

Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings

JianMing Yu, XiaoMing Tao, and HwaYaw Tam
Opt. Lett. 29(2) 156-158 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26, 092004 (2015).
    [Crossref]
  2. M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20, 034014 (2009).
    [Crossref]
  3. M. Silva-Lopez, A. Fender, W. N. MacPherson, J. S. Barton, J. D. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30, 3129–3131 (2005).
    [Crossref] [PubMed]
  4. T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
    [Crossref]
  5. C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
    [Crossref]
  6. F. Bischoff, “Organic polymer biocompatibility and toxicology,” Clin. Chem. 18, 869–894 (1972).
    [PubMed]
  7. W. Zhang, D. J. Webb, and G. D. Peng, “Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Lightwave Technol. 30, 1090–1096 (2012).
    [Crossref]
  8. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polym. J. 47, 4893–4896 (2006).
    [Crossref]
  9. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [Crossref] [PubMed]
  10. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
    [Crossref]
  11. D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39, 3421–3424 (2014).
    [Crossref]
  12. M. Abouelezz and P. Waters, “Studies on the photodegradation of poly (methyl methacrylate),” (DTIC Document, 1978).
  13. R. C. Estler and N. S. Nogar, “Mass spectroscopic identification of wavelength dependent UV laser photoablation fragments from polymethylmethacrylate,” Appl. Phys. Lett. 49, 1175–1177 (1986).
    [Crossref]
  14. R. Srinivasan, B. Braren, R. W. Dreyfus, L. Hadel, and D. E. Seeger, “Mechanism of the ultraviolet laser ablation of polymethyl methacrylate at 193 and 248 nm: laser-induced fluorescence analysis, chemical analysis, and doping studies,” J. Opt. Soc. Am. B 3, 785–791 (1986).
    [Crossref]
  15. G. B. Blanchet, P. Cotts, and C. R. Fincher, “Incubation: Subthreshold ablation of poly-(methyl methacrylate) and the nature of the decomposition pathways,” Appl. Phys. 88, 2975–2978 (2000).
    [Crossref]
  16. H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
    [Crossref]
  17. G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5, 242–251 (1999).
    [Crossref]
  18. R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
    [Crossref]
  19. A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys. A. Mater. Sci. Process. 57, 543–544 (1993).
    [Crossref]
  20. C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89, 252–264 (2005).
    [Crossref]
  21. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23, 10181–10187 (2015).
    [Crossref] [PubMed]
  22. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38, 3769–3772 (2013).
    [Crossref] [PubMed]
  23. Y. Luo, Q. Zhang, H. Liu, and G. D. Peng, “Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser,” Opt. Lett. 35, 751–753 (2010).
    [Crossref] [PubMed]
  24. H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber Under UV Irradiation With Low Power,” IEEE Photon. Technol. Lett. 16, 159–161 (2004).
    [Crossref]
  25. X. Hu, D. Kinet, P. Megret, and C. Caucheteur, “Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers,” Opt. Lett. 41, 2930–2933 (2016).
    [Crossref] [PubMed]
  26. A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
    [Crossref]
  27. H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
    [Crossref]
  28. A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
    [Crossref]

2016 (3)

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

X. Hu, D. Kinet, P. Megret, and C. Caucheteur, “Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers,” Opt. Lett. 41, 2930–2933 (2016).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (2)

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38, 3769–3772 (2013).
[Crossref] [PubMed]

A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
[Crossref]

2012 (2)

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Lightwave Technol. 30, 1090–1096 (2012).
[Crossref]

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

2010 (1)

2009 (2)

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20, 034014 (2009).
[Crossref]

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

2006 (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polym. J. 47, 4893–4896 (2006).
[Crossref]

2005 (2)

2004 (1)

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber Under UV Irradiation With Low Power,” IEEE Photon. Technol. Lett. 16, 159–161 (2004).
[Crossref]

2001 (1)

H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
[Crossref]

2000 (1)

G. B. Blanchet, P. Cotts, and C. R. Fincher, “Incubation: Subthreshold ablation of poly-(methyl methacrylate) and the nature of the decomposition pathways,” Appl. Phys. 88, 2975–2978 (2000).
[Crossref]

1999 (2)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5, 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

1998 (1)

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
[Crossref]

1993 (1)

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys. A. Mater. Sci. Process. 57, 543–544 (1993).
[Crossref]

1989 (1)

1986 (2)

1972 (1)

F. Bischoff, “Organic polymer biocompatibility and toxicology,” Clin. Chem. 18, 869–894 (1972).
[PubMed]

Abang, A.

A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
[Crossref]

Abouelezz, M.

M. Abouelezz and P. Waters, “Studies on the photodegradation of poly (methyl methacrylate),” (DTIC Document, 1978).

Ahmed, R. M.

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

Baker, A. K.

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys. A. Mater. Sci. Process. 57, 543–544 (1993).
[Crossref]

Bang, O.

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39, 3421–3424 (2014).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38, 3769–3772 (2013).
[Crossref] [PubMed]

A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
[Crossref]

Barton, J. S.

Bennion, I.

Bilro, L.

Bischoff, F.

F. Bischoff, “Organic polymer biocompatibility and toxicology,” Clin. Chem. 18, 869–894 (1972).
[PubMed]

Blanchet, G. B.

G. B. Blanchet, P. Cotts, and C. R. Fincher, “Incubation: Subthreshold ablation of poly-(methyl methacrylate) and the nature of the decomposition pathways,” Appl. Phys. 88, 2975–2978 (2000).
[Crossref]

Braren, B.

Caucheteur, C.

Chu, P. L.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber Under UV Irradiation With Low Power,” IEEE Photon. Technol. Lett. 16, 159–161 (2004).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5, 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

Cotts, P.

G. B. Blanchet, P. Cotts, and C. R. Fincher, “Incubation: Subthreshold ablation of poly-(methyl methacrylate) and the nature of the decomposition pathways,” Appl. Phys. 88, 2975–2978 (2000).
[Crossref]

Dobb, H.

Dreyfus, R. W.

Dyer, P. E.

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys. A. Mater. Sci. Process. 57, 543–544 (1993).
[Crossref]

Estler, R. C.

R. C. Estler and N. S. Nogar, “Mass spectroscopic identification of wavelength dependent UV laser photoablation fragments from polymethylmethacrylate,” Appl. Phys. Lett. 49, 1175–1177 (1986).
[Crossref]

Fender, A.

Fincher, C. R.

G. B. Blanchet, P. Cotts, and C. R. Fincher, “Incubation: Subthreshold ablation of poly-(methyl methacrylate) and the nature of the decomposition pathways,” Appl. Phys. 88, 2975–2978 (2000).
[Crossref]

Giok-Djan, K.

H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
[Crossref]

Glenn, W. H.

Hadel, L.

Hu, X.

Ihlemann, J.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
[Crossref]

Jones, J. D.

Kinet, D.

Large, M. C. J.

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20, 034014 (2009).
[Crossref]

Li, W.

H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
[Crossref]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polym. J. 47, 4893–4896 (2006).
[Crossref]

Liu, H.

Liu, H. B.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber Under UV Irradiation With Low Power,” IEEE Photon. Technol. Lett. 16, 159–161 (2004).
[Crossref]

Liu, H. Y.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber Under UV Irradiation With Low Power,” IEEE Photon. Technol. Lett. 16, 159–161 (2004).
[Crossref]

Luo, Y.

Luo, Y. H.

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

Luther, K.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
[Crossref]

MacPherson, W. N.

Marques, C. A. F.

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

Megret, P.

Meltz, G.

Metev, S.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89, 252–264 (2005).
[Crossref]

Monroy, I. T.

H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
[Crossref]

Moran, J. H.

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20, 034014 (2009).
[Crossref]

Morey, W. W.

Nielsen, K.

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39, 3421–3424 (2014).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38, 3769–3772 (2013).
[Crossref] [PubMed]

A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
[Crossref]

Nogar, N. S.

R. C. Estler and N. S. Nogar, “Mass spectroscopic identification of wavelength dependent UV laser photoablation fragments from polymethylmethacrylate,” Appl. Phys. Lett. 49, 1175–1177 (1986).
[Crossref]

Nogueira, R.

Oliveira, R.

Peng, G. D.

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Lightwave Technol. 30, 1090–1096 (2012).
[Crossref]

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

Y. Luo, Q. Zhang, H. Liu, and G. D. Peng, “Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser,” Opt. Lett. 35, 751–753 (2010).
[Crossref] [PubMed]

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber Under UV Irradiation With Low Power,” IEEE Photon. Technol. Lett. 16, 159–161 (2004).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5, 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

Pospori, A.

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

Rasmussen, H. K.

Sáez-Rodríguez, D.

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39, 3421–3424 (2014).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38, 3769–3772 (2013).
[Crossref] [PubMed]

A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
[Crossref]

Schmidt, H.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
[Crossref]

Seeger, D. E.

Shams Eldin, M. A.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89, 252–264 (2005).
[Crossref]

Silva-Lopez, M.

Srinivasan, R.

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polym. J. 47, 4893–4896 (2006).
[Crossref]

Troe, J.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
[Crossref]

Van Bennekom, P. K.

H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
[Crossref]

Van den Boom, H. P. A.

H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
[Crossref]

Wang, T. X.

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

Waters, P.

M. Abouelezz and P. Waters, “Studies on the photodegradation of poly (methyl methacrylate),” (DTIC Document, 1978).

Webb, D. J.

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26, 092004 (2015).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39, 3421–3424 (2014).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38, 3769–3772 (2013).
[Crossref] [PubMed]

A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
[Crossref]

W. Zhang, D. J. Webb, and G. D. Peng, “Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors,” J. Lightwave Technol. 30, 1090–1096 (2012).
[Crossref]

M. Silva-Lopez, A. Fender, W. N. MacPherson, J. S. Barton, J. D. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30, 3129–3131 (2005).
[Crossref] [PubMed]

Wochnowski, C.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89, 252–264 (2005).
[Crossref]

Wolff-Rottke, B.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
[Crossref]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5, 242–251 (1999).
[Crossref]

Ye, L.

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20, 034014 (2009).
[Crossref]

Zhang, L.

Zhang, Q.

Zhang, Q. J.

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

Zhang, W.

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polym. J. 47, 4893–4896 (2006).
[Crossref]

Zhao, D.

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polym. J. 47, 4893–4896 (2006).
[Crossref]

Zubel, M. G.

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

Appl. Phys. (2)

G. B. Blanchet, P. Cotts, and C. R. Fincher, “Incubation: Subthreshold ablation of poly-(methyl methacrylate) and the nature of the decomposition pathways,” Appl. Phys. 88, 2975–2978 (2000).
[Crossref]

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, “Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained,” Appl. Phys. 83, 5458–5468 (1998).
[Crossref]

Appl. Phys. A. Mater. Sci. Process. (1)

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys. A. Mater. Sci. Process. 57, 543–544 (1993).
[Crossref]

Appl. Phys. Lett. (1)

R. C. Estler and N. S. Nogar, “Mass spectroscopic identification of wavelength dependent UV laser photoablation fragments from polymethylmethacrylate,” Appl. Phys. Lett. 49, 1175–1177 (1986).
[Crossref]

Clin. Chem. (1)

F. Bischoff, “Organic polymer biocompatibility and toxicology,” Clin. Chem. 18, 869–894 (1972).
[PubMed]

IEEE J. Sel. Topics Quantum Electron. (1)

H. P. A. Van den Boom, W. Li, P. K. Van Bennekom, I. T. Monroy, and K. Giok-Djan, “High-capacity transmission over polymer optical fiber,” IEEE J. Sel. Topics Quantum Electron. 7, 461–470 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber Under UV Irradiation With Low Power,” IEEE Photon. Technol. Lett. 16, 159–161 (2004).
[Crossref]

IEEE Sens. J. (1)

C. A. F. Marques, A. Pospori, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings,” IEEE Sens. J. 16, 6122–6129 (2016).
[Crossref]

Int. J. Photoenergy (1)

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (2)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26, 092004 (2015).
[Crossref]

M. C. J. Large, J. H. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Technol. 20, 034014 (2009).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5, 242–251 (1999).
[Crossref]

Opt. Lett. (6)

Polym. Degrad. Stab. (1)

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stab. 89, 252–264 (2005).
[Crossref]

Polym. J. (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polym. J. 47, 4893–4896 (2006).
[Crossref]

Proc. SPIE (3)

T. X. Wang, Y. H. Luo, G. D. Peng, and Q. J. Zhang, “High-sensitivity stress sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber,” Proc. SPIE 8351, 83510M (2012).
[Crossref]

A. Pospori, C. A. F. Marques, M. G. Zubel, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors,” Proc. SPIE 9886, 98860V (2016).
[Crossref]

A. Abang, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Connectorisation of fibre Bragg grating sensors recorded in microstructured polymer optical fibre,” Proc. SPIE 8794, 87943Q (2013).
[Crossref]

Other (1)

M. Abouelezz and P. Waters, “Studies on the photodegradation of poly (methyl methacrylate),” (DTIC Document, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross-section image of the POF used for inscription.

Fig. 2
Fig. 2

Apparatus for the gratings inscription.

Fig. 3
Fig. 3

Reflection of POFBG after a number of laser pulses with energy density of (a) 482 mJ/cm2 and (b) 855 mJ/cm2.

Fig. 4
Fig. 4

Reflection of POFBG after a number of laser pulses with energy density of 974 J/cm2 and time interval of (a) 10 to 20 sec and (b) 4 min.

Fig. 5
Fig. 5

Reflection growth rate over time after one laser pulse with energy of 6.3 mJ.

Fig. 6
Fig. 6

Reflected power of non-annealed POFBGs just after inscription and after 1 day.

Fig. 7
Fig. 7

Reflected power before and after the thermal annealing process.

Fig. 8
Fig. 8

Thermal annealing effects on pre-annealed and post-annealed POFBGs.

Fig. 9
Fig. 9

Transmitted power the connectorized and pre-annealed POF.

Fig. 10
Fig. 10

(a) Reflection and (b) transmission spectra of the POFBG inscribed with one laser pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ B = n Λ PM .
R = tanh 2 ( π Δ n L λ B ) .

Metrics