Abstract

We have theoretically and experimentally demonstrated a novel approach to excite Bloch surface wave (BSW) on tapered optical fibers, which are coated with one-dimensional photonic crystal (1DPC) consisting of periodic TiO2 and Al2O3 by atomic layer deposition technology. Two resonant dips are found in transmission spectra that are originated from the excitation of BSW for p-polarized light and s-polarized light, respectively. For the first time, we have demonstrated the developed device for refractive index (RI) sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD

Shan Zhu, Fufei Pang, Sujuan Huang, Fang Zou, Yanhua Dong, and Tingyun Wang
Opt. Express 23(11) 13880-13888 (2015)

One-dimensional photonic crystals with cylindrical geometry

Matthieu Roussey, Emiliano Descrovi, Markus Häyrinen, Angelo Angelini, Markku Kuittinen, and Seppo Honkanen
Opt. Express 22(22) 27236-27241 (2014)

Optical fiber sensor based on Bloch surface wave in photonic crystals

Xiao-Jie Tan and Xiao-Song Zhu
Opt. Express 24(14) 16016-16026 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  2. P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
    [Crossref]
  3. M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), S339–S344 (2007).
    [Crossref]
  4. Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
    [Crossref]
  5. F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
    [Crossref] [PubMed]
  6. D. A. Shilkin, E. V. Lyubin, I. V. Soboleva, and A. A. Fedyanin, “Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal,” Opt. Lett. 40(21), 4883–4886 (2015).
    [Crossref] [PubMed]
  7. L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
    [Crossref] [PubMed]
  8. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
    [Crossref]
  9. A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173(10), 79–84 (2012).
    [Crossref]
  10. Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
    [Crossref]
  11. W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
    [Crossref]
  12. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
    [Crossref] [PubMed]
  13. K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuat. B-Chem. 182(1), 424–428 (2013).
    [Crossref]
  14. V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
    [Crossref]
  15. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
    [Crossref] [PubMed]
  16. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
    [Crossref]
  17. M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
    [Crossref] [PubMed]
  18. M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24(24), 27771–27784 (2016).
    [Crossref] [PubMed]
  19. R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
    [Crossref] [PubMed]
  20. X. J. Tan and X. S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
    [Crossref] [PubMed]
  21. M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
    [Crossref]
  22. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
    [Crossref] [PubMed]
  23. S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
    [Crossref] [PubMed]
  24. Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
    [Crossref] [PubMed]
  25. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: Adiabaticity criteria,” IEEE Proceeding-J, 138, 343–354 (1991).
    [Crossref]
  26. A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10(23), 1320–1333 (2002).
    [Crossref] [PubMed]
  27. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
    [Crossref]
  28. M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B 26(2), 279–289 (2009).
    [Crossref]
  29. S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
    [Crossref]

2017 (1)

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

2016 (4)

S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
[Crossref]

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

X. J. Tan and X. S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
[Crossref] [PubMed]

M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24(24), 27771–27784 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
[Crossref] [PubMed]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
[Crossref]

2013 (4)

K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuat. B-Chem. 182(1), 424–428 (2013).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
[Crossref] [PubMed]

2012 (2)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173(10), 79–84 (2012).
[Crossref]

2011 (1)

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
[Crossref]

2010 (4)

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), S339–S344 (2007).
[Crossref]

2002 (2)

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10(23), 1320–1333 (2002).
[Crossref] [PubMed]

1999 (1)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

1978 (1)

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

1977 (1)

Abeeluck, A.

Angelini, A.

Badugu, R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Bergmair, M.

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), S339–S344 (2007).
[Crossref]

Bezus, E. A.

Bykov, D. A.

Castaldi, G.

Chen, J.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Chen, L. W.

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

Chen, Z.

Cho, A.

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Cusano, A.

Danz, N.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

Descrovi, E.

M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
[Crossref] [PubMed]

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

Dong, Y.

Doskolovich, L. L.

Du, G.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Eggleton, B.

Farmer, A.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173(10), 79–84 (2012).
[Crossref]

Fedyanin, A. A.

Friedli, A. C.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173(10), 79–84 (2012).
[Crossref]

Galdi, V.

Geobaldo, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

George, S. M.

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

Giorgis, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

Guo, Q.

S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
[Crossref]

Han, S.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Häyrinen, M.

Headley, C.

Herminjard, S.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
[Crossref]

Herzig, H. P.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
[Crossref]

Hingerl, K.

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), S339–S344 (2007).
[Crossref]

Hong, C. S.

Honkanen, S.

Hsu, Y. C.

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

Huang, S.

S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
[Crossref]

S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
[Crossref] [PubMed]

Hvozdara, L.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
[Crossref]

Kong, W.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
[Crossref]

Kuittinen, M.

Lakowicz, J. R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Leskelä, M.

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

Li, S.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
[Crossref]

Li, Y.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Liscidini, M.

Litchinitser, N.

Liu, J.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
[Crossref]

Lyubin, E. V.

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Michelotti, F.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

Ming, H.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Munzert, P.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

Musi, V.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
[Crossref]

Paeder, V.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
[Crossref]

Pang, F.

Pang, Z.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Quaglio, M.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

Ritala, M.

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

Robertson, W. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173(10), 79–84 (2012).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Roussey, M.

Scaravilli, M.

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

Sciacca, B.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

Shilkin, D. A.

Sinibaldi, A.

F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi, “Probing losses of dielectric multilayers by means of Bloch surface waves,” Opt. Lett. 38(5), 616–618 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

Sipe, J. E.

Soboleva, I. V.

Song, S.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuat. B-Chem. 182(1), 424–428 (2013).
[Crossref]

Summonte, C.

Sun, Y.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

Tan, X. J.

Wan, Y.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
[Crossref]

Wang, P.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Wang, R.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Wang, T.

Wang, Y.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Wen, J.

S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
[Crossref]

Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
[Crossref] [PubMed]

Wen, X.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Wright, S. M.

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173(10), 79–84 (2012).
[Crossref]

Xia, H.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Yang, E.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Yang, T.

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

Yariv, A.

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
[Crossref]

Yong, K. T.

K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuat. B-Chem. 182(1), 424–428 (2013).
[Crossref]

Yu, T.

K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuat. B-Chem. 182(1), 424–428 (2013).
[Crossref]

Zang, T.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Zeng, S.

K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuat. B-Chem. 182(1), 424–428 (2013).
[Crossref]

Zhang, D.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Zhao, Y.

Zheng, Z.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
[Crossref]

Zhu, L.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Zhu, S.

S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
[Crossref]

S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
[Crossref] [PubMed]

Zhu, X. S.

Zou, F.

S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
[Crossref]

S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
[Crossref] [PubMed]

Zou, G.

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

P. Yeh, A. Yariv, and A. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978).
[Crossref]

Y. Li, T. Yang, S. Song, Z. Pang, G. Du, and S. Han, “Phase properties of Bloch surface waves and their sensing applications,” Appl. Phys. Lett. 103(4), 041116 (2013).
[Crossref]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

IEEE Sens. J. (1)

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16(5), 1200–1204 (2016).
[Crossref]

J. Opt. (1)

Y. C. Hsu and L. W. Chen, “Bloch surface wave excitation based on coupling from photonic crystal waveguide,” J. Opt. 12(9), 095709 (2010).
[Crossref]

J. Opt. A (1)

M. Bergmair and K. Hingerl, “Band structure and coupled surface states in one-dimensional photonic crystals,” J. Opt. A 9(9), S339–S344 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

R. Wang, H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Bloch surface waves confined in one dimension with a single polymeric nanofibre,” Nat. Commun. 8, 14330 (2017).
[Crossref] [PubMed]

Opt. Express (8)

X. J. Tan and X. S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
[Crossref] [PubMed]

M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, and S. Honkanen, “One-dimensional photonic crystals with cylindrical geometry,” Opt. Express 22(22), 27236–27241 (2014).
[Crossref] [PubMed]

M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24(24), 27771–27784 (2016).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[Crossref] [PubMed]

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23(21), 27034–27045 (2015).
[Crossref] [PubMed]

A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10(23), 1320–1333 (2002).
[Crossref] [PubMed]

S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, “High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD,” Opt. Express 23(11), 13880–13888 (2015).
[Crossref] [PubMed]

Y. Zhao, F. Pang, Y. Dong, J. Wen, Z. Chen, and T. Wang, “Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2010).
[Crossref] [PubMed]

Sens. Actuat. B-Chem. (3)

K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, “Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal,” Sens. Actuat. B-Chem. 182(1), 424–428 (2013).
[Crossref]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuat. B-Chem. 157(1), 260–264 (2011).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuat. B-Chem. 193, 467–471 (2014).
[Crossref]

Sens. Actuators B Chem. (2)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B Chem. 174(11), 292–298 (2012).
[Crossref]

A. Farmer, A. C. Friedli, S. M. Wright, and W. M. Robertson, “Biosensing using surface electromagnetic waves in photonic band gap multilayers,” Sens. Actuators B Chem. 173(10), 79–84 (2012).
[Crossref]

Sensors (Basel) (1)

S. Zhu, F. Pang, S. Huang, F. Zou, Q. Guo, J. Wen, and T. Wang, “High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology,” Sensors (Basel) 16(8), 1295 (2016).
[Crossref]

Thin Solid Films (1)

M. Leskelä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409(1), 138–146 (2002).
[Crossref]

Other (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: Adiabaticity criteria,” IEEE Proceeding-J, 138, 343–354 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the tapered fiber coated with one-dimensional photonic crystal for the excitation of Bloch surface wave; the insets show the structure diagram of an equivalent slab waveguide.

Fig. 2
Fig. 2

The calculated bandgaps of the 1DPC structure and dispersion curves of the BSWs (solid lines) and the fundamental modes (dashed lines) for (a) p-polarized light (PPL) and (b) s-polarized light (SPL). The white region denotes the allowed bands; the blue region represents for the forbidden bands.

Fig. 3
Fig. 3

The calculated intensity distribution of electrical field near 1DPC for (a) PPL at wavelength of 1383 nm and (b) SPL at 1481 nm, the dashed lines labels the interface of the different dielectric mediums.

Fig. 4
Fig. 4

The simulated transmission spectra of the tapered fiber for PPL and SPL. The dips appear at 1396nm and 1483nm for PPL and SPL, respectively.

Fig. 5
Fig. 5

The simulated transmission spectra of tapered fiber subject to the environment with various surrounding refractive index for (a) PPL and (b) SPL. (c) The points represent the wavelength shifts of the resonant dips originated from BSW as a function of surrounding refractive index; the curves represent the fitting results.

Fig. 6
Fig. 6

The dispersion curve of (a) Al2O3 and (b) TiO2 deposited by ALD. (c) SEM picture of the1DPC multilayer structure

Fig. 7
Fig. 7

The measured transmission spectra of the two samples of tapered fiber coated with 1DPC in air.

Fig. 8
Fig. 8

The dispersion curves of the BSWs (solid lines) and variation range of the effective refractive index of the fundamental modes (green area) for (a) p-polarized light (PPL) and (b) s-polarized light (SPL).

Fig. 9
Fig. 9

(a) The experimental results of the optical spectra of tapered fiber with BSW excitation subjected to different surrounding refractive index. (b) The measured wavelength shift of resonant dips as a function of surrounding refractive index, and the curves refer to the data fitting.