Abstract

We propose and demonstrate a broadly wavelength tunable mode-locked thulium-doped all-fiber laser, delivering sub-400 femtosecond (fs) pulses and tuning from 1867 nm to 2010 nm. The tunable range of 143 nm, to our best knowledge, is the widest in the femtosecond mode-locked thulium-doped fiber lasers (TDFLs). The broadly tunable range and femtosecond pulse oscillation attribute to the large free spectral range and bandwidth of the fiber-based Lyot filter, benefiting from the hybrid device based compact configuration. The hybrid device, integrating wavelength-division-multiplexer, polarization-sensitive isolator and output coupler, effectively diminishes the birefringence and net dispersion.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248  MHz repetition rate

Biao Sun, Jiaqi Luo, Boon Ping Ng, and Xia Yu
Opt. Lett. 41(17) 4052-4055 (2016)

Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator

Yutaka Nomura and Takao Fuji
Opt. Express 22(10) 12461-12466 (2014)

Widely-pulsewidth-tunable ultrashort pulse generation from a birefringent carbon nanotube mode-locked fiber laser

Ya Liu, Xin Zhao, Jiansheng Liu, Guoqing Hu, Zheng Gong, and Zheng Zheng
Opt. Express 22(17) 21012-21017 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Swofford and A. C. Albrecht, “Nonlinear spectroscopy,” Annu. Rev. Phys. Chem. 29(1), 421–440 (1978).
    [Crossref]
  2. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [Crossref]
  3. W. Liu, C. Li, H. Chung, S. Chia, Z. Zhang, F. X. Kaertner, and G. Chang, “Widely tunable ultrafast sources for multi-photon microscopy,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM2I.7.
    [Crossref]
  4. V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
    [Crossref] [PubMed]
  5. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [Crossref]
  6. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
    [Crossref]
  7. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]
  8. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
    [Crossref] [PubMed]
  9. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]
  10. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fiber laser at 1.6 µm,” Opt. Express 14(13), 6084–6090 (2006).
    [Crossref] [PubMed]
  11. F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 095102 (2015).
    [Crossref]
  12. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
    [Crossref] [PubMed]
  13. G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
    [Crossref]
  14. X. Jin, X. Wang, X. Wang, and P. Zhou, “Tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror,” Appl. Opt. 54(28), 8260–8264 (2015).
    [Crossref] [PubMed]
  15. S. Liu, F. Yan, T. Feng, B. Wu, Z. Dong, and G. K. Chang, “Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Appl. Opt. 53(24), 5522–5526 (2014).
    [Crossref] [PubMed]
  16. Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22, 1656–1658 (2010).
  17. S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
    [Crossref]
  18. N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
    [Crossref]
  19. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
    [Crossref]
  20. Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6(1), 27245 (2016).
    [Crossref] [PubMed]
  21. M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
    [Crossref]
  22. B. Sun, J. Luo, B. P. Ng, and X. Yu, “Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate,” Opt. Lett. 41(17), 4052–4055 (2016).
    [Crossref] [PubMed]
  23. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  24. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [Crossref]
  25. M. Andrew, Weiner, Ultrafast Optics (John Wiley & Sons, 2009), Chap. 3.
  26. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).
  27. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
    [Crossref] [PubMed]
  28. X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Crystalline Solids 195(1-2), 113–124 (1996).
    [Crossref]
  29. P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300 nm spectral band,” Opt. Lett. 39(12), 3650–3653 (2014).
    [Crossref] [PubMed]

2016 (4)

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

B. Sun, J. Luo, B. P. Ng, and X. Yu, “Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate,” Opt. Lett. 41(17), 4052–4055 (2016).
[Crossref] [PubMed]

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6(1), 27245 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

2010 (2)

K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
[Crossref] [PubMed]

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22, 1656–1658 (2010).

2007 (1)

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

2006 (1)

2002 (2)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

1999 (1)

1996 (1)

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Crystalline Solids 195(1-2), 113–124 (1996).
[Crossref]

1995 (2)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

1992 (2)

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

1991 (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

1985 (1)

V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
[Crossref] [PubMed]

1978 (1)

R. L. Swofford and A. C. Albrecht, “Nonlinear spectroscopy,” Annu. Rev. Phys. Chem. 29(1), 421–440 (1978).
[Crossref]

1933 (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Albrecht, A. C.

R. L. Swofford and A. C. Albrecht, “Nonlinear spectroscopy,” Annu. Rev. Phys. Chem. 29(1), 421–440 (1978).
[Crossref]

Baravets, Y.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Barnes, N. P.

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Chang, G. K.

Clarkson, W. A.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Dong, Z.

Fang, Q.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22, 1656–1658 (2010).

Feng, T.

Feng, Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Fermann, M. E.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Gao, X. J.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Guina, M.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Haberl, F.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Hakulinen, T.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Hanna, D. C.

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

Hofer, M.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Honzatko, P.

Ilday, F. Ö.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

Jackson, S. D.

Jia, Z. X.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Jin, X.

Kasik, I.

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Kieu, K.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22, 1656–1658 (2010).

King, T. A.

Kivisto, S.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
[Crossref] [PubMed]

Li, F.

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 095102 (2015).
[Crossref]

Li, J.

Li, N.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Li, X.

Liu, M. Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Liu, S.

Liu, Y.

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

Liu, Z.

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Lou, J.

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Luo, H.

Luo, J.

B. Sun, J. Luo, B. P. Ng, and X. Yu, “Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate,” Opt. Lett. 41(17), 4052–4055 (2016).
[Crossref] [PubMed]

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6(1), 27245 (2016).
[Crossref] [PubMed]

Lyot, B.

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

Ng, B. P.

Nilsson, J.

Ober, M. H.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Ohishi, Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Okhotnikov, O. G.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Özgören, K.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Peyghambarian, N.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22, 1656–1658 (2010).

Podrazky, O.

Qin, G. S.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Qin, W. P.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

Sahu, J. K.

Shen, D. Y.

Shum, P. P.

Sun, B.

B. Sun, J. Luo, B. P. Ng, and X. Yu, “Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate,” Opt. Lett. 41(17), 4052–4055 (2016).
[Crossref] [PubMed]

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6(1), 27245 (2016).
[Crossref] [PubMed]

Sun, Z.

Swofford, R. L.

R. L. Swofford and A. C. Albrecht, “Nonlinear spectroscopy,” Annu. Rev. Phys. Chem. 29(1), 421–440 (1978).
[Crossref]

Tang, Y.

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Toratani, H.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Crystalline Solids 195(1-2), 113–124 (1996).
[Crossref]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Turner, P. W.

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Wang, Q. J.

Wang, X.

Wang, Z.

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Wu, B.

Xie, X. S.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

Yan, F.

Yan, Z.

Yang, G.

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

Yu, X.

Zhang, L.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

Zhang, Y.

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6(1), 27245 (2016).
[Crossref] [PubMed]

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 095102 (2015).
[Crossref]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

Zhou, K.

Zhou, P.

Zhu, H.

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 095102 (2015).
[Crossref]

Zou, X.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Crystalline Solids 195(1-2), 113–124 (1996).
[Crossref]

Annu. Rev. Phys. Chem. (1)

R. L. Swofford and A. C. Albrecht, “Nonlinear spectroscopy,” Annu. Rev. Phys. Chem. 29(1), 421–440 (1978).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Appl. Phys. Lett. (2)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[Crossref]

C.R. Acad. Sci. (Paris) (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22, 1656–1658 (2010).

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Crystalline Solids (1)

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Crystalline Solids 195(1-2), 113–124 (1996).
[Crossref]

Laser Phys. Lett. (3)

G. Yang, Y. Liu, Z. Wang, J. Lou, Z. Wang, and Z. Liu, “Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber,” Laser Phys. Lett. 13(6), 065105 (2016).
[Crossref]

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 075103 (2016).
[Crossref]

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 095102 (2015).
[Crossref]

Nature (1)

V. S. Letokhov, “Laser biology and medicine,” Nature 316(6026), 325–330 (1985).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Sci. Rep. (1)

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6(1), 27245 (2016).
[Crossref] [PubMed]

Other (2)

W. Liu, C. Li, H. Chung, S. Chia, Z. Zhang, F. X. Kaertner, and G. Chang, “Widely tunable ultrafast sources for multi-photon microscopy,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM2I.7.
[Crossref]

M. Andrew, Weiner, Ultrafast Optics (John Wiley & Sons, 2009), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic setup of the compact mode-locked fiber laser.

Fig. 2
Fig. 2

(a) Single pulse and pulse train of fundamental mode-locking; (b) RF spectrum, top left: fundamental frequency f1 = 247.984 MHz (10 Hz RBW and 5 KHz span), top right: 10th order harmonic frequency f10 = 2.47984 GHz (100 Hz RBW and 20 MHz span), bottom: 10 MHz RBW and 10 GHz span.

Fig. 3
Fig. 3

(a) The series of optical spectra with a ~20 nm spacing; (b), The optical spectrum at the central wavelength of 1940 nm.

Fig. 4
Fig. 4

(a) Pulse width and spectral bandwidth at the different operating wavelength; (b) The measured and retrieved FROG traces at the central wavelength of 1940 nm.

Fig. 5
Fig. 5

(a) Experimental measurement of the FSR; (b) Transmission spectrum of the hybrid component and ASE of the TDF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR= λ 2 /(ΔnL)
T=cos(FSRπ/λ+φ)

Metrics