Abstract

In this article, a new and flexible approach to control the electric field enhancement of bow-tie nano-antennas by integrating them on the lateral of a tapered optical fiber is proposed. The device is driven by a Q-switched laser and the performance of a fabricated nano-antenna in a quartz slide is tested by a Surface Enhanced Raman Scattering (SERS) experiment. A refractive index sensing experiment is also performed and a sensitivity of (240 ± 30) nm/RIU is found in the 1.33-1.35 index range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Arrays of recycled power TM polarized nano-antennas

Haroldo T. Hattori and Ziyuan Li
Opt. Express 21(14) 16273-16281 (2013)

Thick multilayered (silica/gold) dipole nano-antenna

Abdul Khaleque, Evgeny G. Mironov, Liming Liu, and Haroldo T. Hattori
Appl. Opt. 54(34) 10063-10067 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, 2013).
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).
  3. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
  4. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nano-antenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).
  5. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
    [PubMed]
  6. R. U. Tok, C. Ow-Yang, and K. Şendur, “Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry,” Opt. Express 19(23), 22731–22742 (2011).
    [PubMed]
  7. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007).
    [PubMed]
  8. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [PubMed]
  9. Z. Li, H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, “Merging photonic wire lasers and nano-antennas,” J. Lightwave Technol. 29(18), 2690–2697 (2011).
  10. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
  11. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
    [PubMed]
  12. E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” J. Lightwave Technol. 31(15), 2459–2466 (2013).
  13. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
  14. Fullwave, version 8.3 (RSOFT design group: 2011)
  15. E. G. Mironov, Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, “Titanium nano-antenna for high-power pulsed operation,” J. Lightwave Technol. 31(15), 2459–2466 (2013).
  16. http://www.kemix.com/
  17. L. Liu, H. T. Hattori, E. G. Mironov, and A. Khaleque, “Composite chromium and graphene oxide as saturable absorber in ytterbium-doped Q-switched fiber lasers,” Appl. Opt. 53(6), 1173–1180 (2014).
    [PubMed]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  19. P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia, “Fiber probe based microfluidic raman spectroscopy,” Opt. Express 18(8), 7642–7649 (2010).
    [PubMed]
  20. M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).
  21. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
    [PubMed]
  22. W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).
  23. Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys. 45(30), 305102 (2012).
  24. S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
    [PubMed]
  25. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
  26. E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Opt. Mater. 60, 137–141 (2016).
  27. J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).
  28. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).
  29. S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51(16), 3236–3242 (2012).
    [PubMed]
  30. F. Beltrán-Mejía, J. H. Osório, C. R. Biazoli, and C. M. B. Cordeiro, “D-microfibers,” J. Lightwave Technol. 31(16), 3056–3061 (2013).
  31. J. Calderón, J. Álvarez, J. Martinez-Pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10(3), 703–711 (2015).
  32. H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).
  33. L. W. Nien, B. K. Chao, J. H. Li, and C. H. Hsueh, “Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays,” Plasmonics 10(3), 553–561 (2015).
  34. C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids, “Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas,” Opt. Express 21(4), 5198–5208 (2013).
    [PubMed]

2017 (1)

H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).

2016 (1)

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Opt. Mater. 60, 137–141 (2016).

2015 (2)

J. Calderón, J. Álvarez, J. Martinez-Pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10(3), 703–711 (2015).

L. W. Nien, B. K. Chao, J. H. Li, and C. H. Hsueh, “Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays,” Plasmonics 10(3), 553–561 (2015).

2014 (1)

2013 (5)

2012 (3)

2011 (3)

2010 (5)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nat. Photonics 4(5), 312–315 (2010).

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nano-antenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).

P. C. Ashok, G. P. Singh, K. M. Tan, and K. Dholakia, “Fiber probe based microfluidic raman spectroscopy,” Opt. Express 18(8), 7642–7649 (2010).
[PubMed]

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
[PubMed]

2009 (2)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).

2008 (3)

H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[PubMed]

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).

2007 (1)

2006 (1)

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

2005 (1)

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).

1998 (1)

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Abdelsalam, M. E.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

Álvarez, J.

J. Calderón, J. Álvarez, J. Martinez-Pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10(3), 703–711 (2015).

Ashok, P. C.

Bakker, R.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Banaee, M. G.

Bao, J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[PubMed]

Bao, K.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Bartlett, P. N.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

Baumberg, J. J.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

Beltrán-Mejía, F.

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).

Biazoli, C. R.

J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).

F. Beltrán-Mejía, J. H. Osório, C. R. Biazoli, and C. M. B. Cordeiro, “D-microfibers,” J. Lightwave Technol. 31(16), 3056–3061 (2013).

Birke, R. L.

M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).

Boltasseva, A.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Bour, D.

Brambilla, G.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).

Cai, W. B.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Cai, X. W.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Calderón, J.

J. Calderón, J. Álvarez, J. Martinez-Pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10(3), 703–711 (2015).

Canamares, M. V.

M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).

Capasso, F.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[PubMed]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007).
[PubMed]

Chao, B. K.

L. W. Nien, B. K. Chao, J. H. Li, and C. H. Hsueh, “Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays,” Plasmonics 10(3), 553–561 (2015).

Chenal, C.

M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).

Chettiar, U.

Cintra, S.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

Cordeiro, C. M. B.

Corzine, S.

Crozier, K. B.

Cubukcu, E.

Davids, P. S.

Dell’Oro, A.

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Opt. Mater. 60, 137–141 (2016).

DeRose, C. T.

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).

Dholakia, K.

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[PubMed]

Diehl, L.

Ding, J. F.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).

Drachev, V. P.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Du, C.

H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).

Engheta, N.

Fischer, H.

Franco, M. A. R.

Frazão, O.

Fu, L.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys. 45(30), 305102 (2012).

Z. Li, H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, “Merging photonic wire lasers and nano-antennas,” J. Lightwave Technol. 29(18), 2690–2697 (2011).

Giessen, H.

Gissibl, T.

Gouveia, C. J.

J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).

Hattori, H. T.

Hayashi, J. G.

J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).

S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51(16), 3236–3242 (2012).
[PubMed]

He, S.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).

Hill, D.

J. Calderón, J. Álvarez, J. Martinez-Pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10(3), 703–711 (2015).

Höfler, G.

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nat. Photonics 4(5), 312–315 (2010).

Hsueh, C. H.

L. W. Nien, B. K. Chao, J. H. Li, and C. H. Hsueh, “Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays,” Plasmonics 10(3), 553–561 (2015).

Hu, H.

H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).

Jagadish, C.

Johansson, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Jorge, P.

Jorge, P. A. S.

J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nat. Photonics 4(5), 312–315 (2010).

Käll, M.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Kedenburg, S.

Kekatpure, R. D.

Kelf, T. A.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

Khaleque, A.

Kildishev, A. V.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nat. Photonics 4(5), 312–315 (2010).

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nano-antenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).

Li, J. H.

L. W. Nien, B. K. Chao, J. H. Li, and C. H. Hsueh, “Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays,” Plasmonics 10(3), 553–561 (2015).

Li, X. Q.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Li, Z.

Liu, F. M.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Liu, L.

Liu, Z.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Lombardi, J. R.

M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).

Malcata, F. X.

Martin, O. J.

Martinez-Pastor, J.

J. Calderón, J. Álvarez, J. Martinez-Pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10(3), 703–711 (2015).

Miljkovic, V. D.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Mironov, E. G.

Mosquera, L.

J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).

Nien, L. W.

L. W. Nien, B. K. Chao, J. H. Li, and C. H. Hsueh, “Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays,” Plasmonics 10(3), 553–561 (2015).

Nordlander, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nano-antenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).

Osório, J. H.

J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).

F. Beltrán-Mejía, J. H. Osório, C. R. Biazoli, and C. M. B. Cordeiro, “D-microfibers,” J. Lightwave Technol. 31(16), 3056–3061 (2013).

Ow-Yang, C.

Pachon, E. G. P.

Parkinson, P.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys. 45(30), 305102 (2012).

Pedersen, R. H.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nano-antenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).

Ren, B.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Russell, A. E.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

Sani, E.

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Opt. Mater. 60, 137–141 (2016).

Sendur, K.

Shalaev, V. M.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Shao, L. Y.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).

She, C. X.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Shegai, T.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Silva, S.

Singh, G. P.

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nano-antenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[PubMed]

Starbuck, A.

Sugawara, Y.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

Tan, H. H.

Tan, K. M.

Tian, J.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys. 45(30), 305102 (2012).

Tian, Z. Q.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Tok, R. U.

Trotter, D. C.

Vieweg, M.

Vora, K.

Wang, Q.

H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).

Wang, X.

H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).

Watts, M. R.

Wendt, J. R.

Whitesides, G. M.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[PubMed]

Xu, H.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Yaacobi, A.

Yan, J. H.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).

Yu, N.

Zhang, A. P.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).

Zhao, Y.

H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).

Zhu, J.

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1, 438–483 (2009).

Appl. Opt. (2)

Faraday Discuss. (1)

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199 (2006).
[PubMed]

IEEE Photonics Technol. Lett. (1)

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett. 17(6), 1247–1249 (2005).

Instrum. Sci. Technol. (1)

H. Hu, C. Du, Q. Wang, X. Wang, and Y. Zhao, “High sensitivity internal refractive index sensor based on a photonic crystal fiber long period grating,” Instrum. Sci. Technol. 45(2), 181–189 (2017).

J. Lightwave Technol. (4)

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).

J. Phys. Chem. C (1)

M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, “DFT, SERS, and single-molecule SERS of crystal violet,” J. Phys. Chem. C 112(51), 20295–20300 (2008).

J. Phys. D Appl. Phys. (1)

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D Appl. Phys. 45(30), 305102 (2012).

J. Sol. Energy Eng. (1)

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nano-antenna electromagnetic collectors,” J. Sol. Energy Eng. 132(1), 011014 (2010).

Meas. Sci. Technol. (1)

J. H. Osório, L. Mosquera, C. J. Gouveia, C. R. Biazoli, J. G. Hayashi, P. A. S. Jorge, and C. M. B. Cordeiro, “High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis,” Meas. Sci. Technol. 24(1), 015102 (2013).

Metamaterials (Amst.) (1)

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nano-antenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).

Nano Lett. (2)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009).
[PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[PubMed]

Nat. Photonics (1)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi–uda antenna,” Nat. Photonics 4(5), 312–315 (2010).

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

E. Sani and A. Dell’Oro, “Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared,” Opt. Mater. 60, 137–141 (2016).

Opt. Mater. Express (1)

Plasmonics (2)

J. Calderón, J. Álvarez, J. Martinez-Pastor, and D. Hill, “Polarimetric plasmonic sensing with bowtie nanoantenna arrays,” Plasmonics 10(3), 703–711 (2015).

L. W. Nien, B. K. Chao, J. H. Li, and C. H. Hsueh, “Optimized sensitivity and electric field enhancement by controlling localized surface plasmon resonances for bowtie nanoring nanoantenna arrays,” Plasmonics 10(3), 553–561 (2015).

Surf. Sci. (1)

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci. 406(1), 9–22 (1998).

Other (4)

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, 2013).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Fullwave, version 8.3 (RSOFT design group: 2011)

http://www.kemix.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of (a) single bow-tie nano-antenna (b) tapered fiber including dimensions with nano-antennas array position. Fiber axis aligned with the x-direction, electric field is in the z-direction.

Fig. 2
Fig. 2

Electric field enhancement factor (EF) as function of (a) wavelength (b) gap (lgap) for single bow-tie nano-antenna (c) Normalized electric field (Ez) profile.

Fig. 3
Fig. 3

(a) Relative electric field with respect to the input field intensity, in the tapered fiber (b) output electric field, as a function of radial distance of the tapered fiber.

Fig. 4
Fig. 4

Scanning Electron Microscope (SEM) image of the fabricated (a) bow-tie antenna arrays (b) single bow-tie, on the tapered optical fiber.

Fig. 5
Fig. 5

Schematic of the Q-switched ring fiber laser setup (b) Average power (Pavg) as a function of pump power of Q-switched fiber laser while MoS2 is used as SA (inset shows generated single pulse).

Fig. 6
Fig. 6

(a) Schematic diagram of the Raman system for SERS measurement (b) Raman spectra of bow-tie nano-antenna fabricated on a tapered fiber and the quartz substrate used as a reference.

Fig. 7
Fig. 7

(a) Resonance wavelength shift with respect to different concentration of ethanol (b) Peak wavelength as a function of corresponding refractive index of ethanol/water mixture.

Tables (1)

Tables Icon

Table 1 Typical parameters [22].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε gold ( ω FW )=1+ m=1 6 Δ ε m a m ω FW 2 i b m ω FW + c m
EF= | E gap | | E inc |
E F SERS = I SERS / N s I ref / N bulk
N s = μ s A p
N bulk = C s N A h A laser
Δλ= λ ethanol(mixed) λ ethanol(100%)
n= 2g+1 1g
g=( n 1 2 1 n 1 2 +2 )ϕ+( n 2 2 1 n 2 2 +2 )( 1ϕ )

Metrics