Abstract

Investigated in this paper is the interaction of light and the nanospheres composed by a dielectric core with a gold-shell cladding that causes the optical vortices inside the core and the whirlpools around the shell. Different radius ratios, dimensions and the dielectric functions of nanospheres were studied using the finite-difference time-domain method. It was found that optical vortices were most likely to occur in the regions of increased absorption cross section and reduced scattering cross section. Two optical vortices of the opposite polarity, each centered in one of the particles of a dimer are created by a nanoshell dimer. The surrounding media of a nanoshell with different dielectric functions can be used to affect the energy flows generated by core-shell nanospheres.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas

Mario Zapata, Ángela S. Camacho Beltrán, Andrei G. Borisov, and Javier Aizpurua
Opt. Express 23(6) 8134-8149 (2015)

Linear optical properties of gold nanoshells

Richard D. Averitt, Sarah L. Westcott, and Naomi J. Halas
J. Opt. Soc. Am. B 16(10) 1824-1832 (1999)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  2. F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
    [Crossref] [PubMed]
  3. N. K. Pathak, A. Ji, and R. P. Sharma, “Tunable properties of surface plasmon resonances: the influence of core-shell thickness and dielectric environment,” Plasmonics 9(3), 651–657 (2014).
    [Crossref]
  4. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
    [Crossref]
  5. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25(3), 377–445 (1908).
    [Crossref]
  6. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  7. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  8. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [Crossref] [PubMed]
  9. M. D. Turner, M. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys. 12(8), 083062 (2010).
    [Crossref]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  11. K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
    [Crossref] [PubMed]
  12. C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
    [Crossref] [PubMed]
  13. H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
    [Crossref]
  14. S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
    [Crossref] [PubMed]
  15. Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1(3), 228–234 (2014).
    [Crossref]
  16. N. Zhang, S. Liu, and Y.-J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
    [Crossref] [PubMed]
  17. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
    [Crossref]
  18. A. Alù and N. Engheta, “Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles,” J. Opt. Soc. Am. B 24(10), A89–A97 (2007).
    [Crossref]
  19. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
    [Crossref] [PubMed]
  20. M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
    [Crossref] [PubMed]
  21. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12(1), 219–227 (2012).
    [Crossref] [PubMed]
  22. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
    [Crossref]
  23. S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19(22), 22305–22315 (2011).
    [Crossref] [PubMed]
  24. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4(1), 76–90 (2012).
    [Crossref] [PubMed]
  25. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [Crossref] [PubMed]
  26. Lumerical Solutions, Inc., http://www.lumerical.com/ .
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
    [Crossref] [PubMed]
  29. J. Y. Lu and Y. H. Chang, “Optical singularities associated with the energy flow of two closely spaced core-shell nanocylinders,” Opt. Express 17(22), 19451–19458 (2009).
    [Crossref] [PubMed]

2015 (2)

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

2014 (4)

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1(3), 228–234 (2014).
[Crossref]

N. K. Pathak, A. Ji, and R. P. Sharma, “Tunable properties of surface plasmon resonances: the influence of core-shell thickness and dielectric environment,” Plasmonics 9(3), 651–657 (2014).
[Crossref]

2012 (3)

N. Zhang, S. Liu, and Y.-J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12(1), 219–227 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4(1), 76–90 (2012).
[Crossref] [PubMed]

2011 (2)

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19(22), 22305–22315 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

2010 (1)

M. D. Turner, M. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys. 12(8), 083062 (2010).
[Crossref]

2009 (1)

2008 (2)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

2007 (2)

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles,” J. Opt. Soc. Am. B 24(10), A89–A97 (2007).
[Crossref]

2006 (2)

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[Crossref]

2005 (3)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

2004 (2)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25(3), 377–445 (1908).
[Crossref]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
[Crossref]

Ahn, W.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12(1), 219–227 (2012).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles,” J. Opt. Soc. Am. B 24(10), A89–A97 (2007).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

Ayala-Orozco, C.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1(3), 228–234 (2014).
[Crossref]

Baek, S.-W.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Bashevoy, M.

Bishnoi, S. W.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Boriskina, S. V.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12(1), 219–227 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4(1), 76–90 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19(22), 22305–22315 (2011).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1(3), 228–234 (2014).
[Crossref]

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chang, Y. H.

Charron, H.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Chen, A. L.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Chen, L.

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

Cho, C.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Chong, T. C.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles,” J. Opt. Soc. Am. B 24(10), A89–A97 (2007).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

Fedotov, V.

Feng, J.

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Goodman, A. M.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Gu, M.

M. D. Turner, M. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys. 12(8), 083062 (2010).
[Crossref]

Halas, N. J.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

He, H.

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Hong, M. H.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[Crossref]

Hong, Y.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12(1), 219–227 (2012).
[Crossref] [PubMed]

Hossain, M. M.

M. D. Turner, M. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys. 12(8), 083062 (2010).
[Crossref]

Hou, H.

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Ji, A.

N. K. Pathak, A. Ji, and R. P. Sharma, “Tunable properties of surface plasmon resonances: the influence of core-shell thickness and dielectric environment,” Plasmonics 9(3), 651–657 (2014).
[Crossref]

Jin, Y.

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joshi, A.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
[Crossref]

Knight, M. W.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Kundu, J.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Lee, C.-H.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Lee, J.-Y.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1(3), 228–234 (2014).
[Crossref]

Lin, Y.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[Crossref]

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liu, S.

N. Zhang, S. Liu, and Y.-J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Lu, J. Y.

Lu, L.

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[Crossref]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[Crossref]

Ma, K.

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25(3), 377–445 (1908).
[Crossref]

Mitchell, T.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Mukherjee, S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Nanda, S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Neumann, O.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Noh, J.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Park, G.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Pathak, N. K.

N. K. Pathak, A. Ji, and R. P. Sharma, “Tunable properties of surface plasmon resonances: the influence of core-shell thickness and dielectric environment,” Plasmonics 9(3), 651–657 (2014).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qi, Z.

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Reinhard, B. M.

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12(1), 219–227 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4(1), 76–90 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates,” Opt. Express 19(22), 22305–22315 (2011).
[Crossref] [PubMed]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Roy, R.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Schiff, R.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Seo, M.-K.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Sharma, R. P.

N. K. Pathak, A. Ji, and R. P. Sharma, “Tunable properties of surface plasmon resonances: the influence of core-shell thickness and dielectric environment,” Plasmonics 9(3), 651–657 (2014).
[Crossref]

Shea, M.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Song, H.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Tam, F.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Ternovsky, V.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Turner, M. D.

M. D. Turner, M. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys. 12(8), 083062 (2010).
[Crossref]

Urban, A. S.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Urban, C.

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

Wang, H.

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[Crossref]

Xu, Y.-J.

N. Zhang, S. Liu, and Y.-J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

Zhang, N.

N. Zhang, S. Liu, and Y.-J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

Zhang, Y.

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

Zhao, Z.

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

Zheludev, N.

Zhuo, C.

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

ACS Nano (2)

C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells,” ACS Nano 8(6), 6372–6381 (2014).
[Crossref] [PubMed]

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

Z. Li, S. Butun, and K. Aydin, “Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials,” ACS Photonics 1(3), 228–234 (2014).
[Crossref]

Ann. Phys. (Leipzig) (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25(3), 377–445 (1908).
[Crossref]

Biosens. Bioelectron. (1)

K. Ma, L. Lu, Z. Qi, J. Feng, C. Zhuo, and Y. Zhang, “In situ induced metal-enhanced fluorescence: a new strategy for biosensing the total acetylcholinesterase activity in sub-microliter human whole blood,” Biosens. Bioelectron. 68, 648–653 (2015).
[Crossref] [PubMed]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
[Crossref]

J. Chem. Phys. (1)

F. Tam, A. L. Chen, J. Kundu, H. Wang, and N. J. Halas, “Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit,” J. Chem. Phys. 127(20), 204703 (2007).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

H. Hou, L. Chen, H. He, L. Chen, Z. Zhao, and Y. Jin, “Fine-tuning the LSPR response of gold nanorod–polyaniline core–shell nanoparticles with high photothermal efficiency for cancer cell ablation,” J. Mater. Chem. B Mater. Biol. Med. 3(26), 5189–5196 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12(1), 219–227 (2012).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Nanoscale (2)

N. Zhang, S. Liu, and Y.-J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4(1), 76–90 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

M. D. Turner, M. M. Hossain, and M. Gu, “The effects of retardation on plasmon hybridization within metallic nanostructures,” New J. Phys. 12(8), 083062 (2010).
[Crossref]

Opt. Express (3)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref] [PubMed]

Plasmonics (1)

N. K. Pathak, A. Ji, and R. P. Sharma, “Tunable properties of surface plasmon resonances: the influence of core-shell thickness and dielectric environment,” Plasmonics 9(3), 651–657 (2014).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Other (1)

Lumerical Solutions, Inc., http://www.lumerical.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic drawing of a single dielectric-core and gold-shell nanosphere, where r1 and r2 denote the inner radius and outer radii. The incident wave with x-polarization propagates in the negative z direction. (b) Extinction, scattering, and absorption efficiencies of analytical (Qex-A, Qsc-A, and Qab-A), and numerical solutions (Qex-N, Qsc-N, and Qab-N).

Fig. 2
Fig. 2

(a) Extinction, (b) scattering, and (c) absorption cross section spectra of a single dielectric-core gold-shell nanoparticle for radius ratio r1/r2 from 0.5 to 1.0 with the outer radius equal to 140 nm and the relative permittivity of the dielectric core equal to 4.0.

Fig. 3
Fig. 3

(a) Extinction (black line), scattering (blue line), and absorption (red line) spectra of a single dielectric-core gold-shell nanoparticle with r1/r2 = 0.5. The energy flow of the coreshell at wavelength of (b) 764 nm, (c) 560 nm, and (d) 542 nm, corresponding to the peak of the extinction cross section, the dip of the scattering cross section, and the other extinction peak. The color bar indicates the amplitudes of the Poynting vectors in logarithmic scale. The corresponding electric field distribution of (b)- (d) are (e)-(g). The color bar indicates the amplitudes of the electric fields in linear scale. The corresponding phases of Poynting vectors of (b)-(d) are (h)-(j).

Fig. 4
Fig. 4

(a) Extinction (black line), scattering (red line), and absorption (blue line) spectra of a single dielectric-core gold-shell nanoparticle with r1/r2 = 0.7. The energy flow of the coreshell at wavelength of (b) 658 nm, (c) 650 nm, and (d)586 nm, corresponding to the peak of the absorption cross section, the dip of the scattering cross section and the other absorption peak. The color bar indicates the amplitudes of the Poynting vectors in logarithmic scale. The corresponding electric field distributions of (b)-(d) are (e)-(g). The color bar indicates the amplitudes of the electric fields in linear scale. The corresponding phases of Poynting vectors of (b)-(d) are (h)-(j).

Fig. 5
Fig. 5

(a) Extinction (black line), scattering (red line), and absorption (blue line) spectra of a single dielectric-core gold-shell nanoparticle with r1/r2 = 0.9. The energy of the coreshell at wavelength of (b) 850 nm, (c) 930 nm and (d) 998 nm, corresponding to the dip of the scattering cross section, the cross point of the absorption and scattering cross section and the peak of the absorption cross section. The amplitude of the Poynting vector in logarithmic scale. The corresponding electric field distribution of (b)-(d) are (e)-(g). The color bar indicates the amplitudes of the electric fields in linear scale. The corresponding phases of Poynting vectors of (b)-(d) are (h)-(j).

Fig. 6
Fig. 6

(a) Extinction, (b) scattering, and (c) absorption cross section spectra of a core-shell nanoparticle for r2 = 140 nm, r1/r2 = 7/10 and the relative permittivity ranging from 1 to 9.

Fig. 7
Fig. 7

(a) Scattering (dashed lines), and absorption (sold lines) spectra of dielectric-core gold-shell nanoparticles with relative permittivity εr = 2.25 (blue lines) and εr = 6.25 (red lines). The energy of the coreshell at wavelength of (b) 796 nm and (e) 550 nm, corresponding to the peak of the absorption cross section of εr = 6.25 and εr = 2.25, respectively. The corresponding electric field distribution of (b) and (e) are (c) and (f). The corresponding phases of Poynting vectors of (b) and (e) are (d) and (g).

Fig. 8
Fig. 8

(a) Extinction, (b) scattering, and (c) absorption cross section spectra of a pair of dielectric-core gold-shell nanoparticle for radius ratio r1/r2 from 0.5 to 1.0 with the outer radius equal to 140 nm and the relative permittivity of the dielectric core equal to 4.0. The distance between two nanoparticles is 70 nm.

Fig. 9
Fig. 9

(a) Scattering (dashed line) and absorption (solid line) cross section of a nanoshell (blue line) and a dimer of nanoshell (red line) with r2 = 140 nm, (b) the distribution of the energy flows at the wavelength of 658 nm, (c) the corresponding phases of the Poynting vectors, and (d) the distributions of the electric fields. (e) the energy flow of the dimer at the wavelength of 736 nm with r1/r2 = 0.8. (f) the energy flow of the dimer at the wavelength of 850 nm with r1/r2 = 0.9.

Fig. 10
Fig. 10

Schematic drawings of the structures of (a) a nanoshell and a nanosphere, (c) a pair of nanoshell, and (e) a pair of nanoshell a nanosphere. The outer radii of the nanoshell and the dielectric nanosphere are 140 nm, the relative permittivity of the dielectric materials are set as 4.0, and the radius ratio of the nanoshell is 0.7. The corresponding energy flow of (a), (c) and (e) at the wavelength of 658 nm are (b), (d), and (f).

Metrics