Abstract

We propose a compact design of see-through near-eye display that is dedicated to presbyopia. Our solution is characterized by a plano-convex waveguide, which is essentially an integration of a corrective lens and two volume holograms. Its design rules are set forth in detail, followed by the results and discussion regarding the diffraction efficiency, field of view, modulation transfer function, distortion, and simulated imaging.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
See-through near-eye displays enabling vision correction

Lei Zhou, Chao Ping Chen, Yishi Wu, Zhonglin Zhang, Keyu Wang, Bing Yu, and Yang Li
Opt. Express 25(3) 2130-2142 (2017)

Simulation design of a wearable see-through retinal projector

Wen-Shing Sun, Chuen-Lin Tien, Yen-Chen Chiang, and Jui-Wen Pan
Appl. Opt. 54(14) 4485-4494 (2015)

Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics

Dewen Cheng, Yongtian Wang, Chen Xu, Weitao Song, and Guofan Jin
Opt. Express 22(17) 20705-20719 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Goldman Sachs Global Investment Research, “Virtual & augmented reality: understanding the race for the next computing platform,” http://www.goldmansachs.com/our-thinking/pages/virtual-and-augmented-reality-report.html .
  2. K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
    [Crossref]
  3. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref] [PubMed]
  4. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  5. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
    [Crossref] [PubMed]
  6. Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.
    [Crossref]
  7. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  8. D. Cheng, Y. Wang, C. Xu, W. Song, and G. Jin, “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics,” Opt. Express 22(17), 20705–20719 (2014).
    [Crossref] [PubMed]
  9. N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu, and Y. Wang, “Improved holographic waveguide display system,” Appl. Opt. 54(12), 3645–3649 (2015).
    [Crossref]
  10. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
    [Crossref]
  11. M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” SID Display Week (2016), pp. 164–167.
  12. C. P. Chen, Z. Zhang, and X. Yang, “A head-mounted smart display device for augmented reality,” CN Patent 201610075988.7 (2016).
  13. L. Zhou, C. P. Chen, Y. Wu, K. Wang, and Z. Zhang, “See-through near-eye displays for visual impairment,” The 23rd International Display Workshops in conjunction with Asia Display (2016), pp. 1114–1115.
  14. L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
    [Crossref]
  15. H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
    [Crossref] [PubMed]
  16. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).
  17. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Addison-Wesley, 2006).
  18. Wikipedia, “Presbyopia,” https://en.wikipedia.org/wiki/Presbyopia .
  19. J. W. Goodman, Introduction to Fourier Optics 3rd Edition (Roberts & Company Publishers, 2004).
  20. Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
    [Crossref]
  21. C. P. Chen, Y. Su, and C. G. Jhun, “Recent advances in holographic recording media for dynamic holographic display,” J. Opt. Photonics 1(1), 1–8 (2014).
    [Crossref]
  22. Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
    [Crossref]
  23. R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1–4), 1–5 (1993).
    [Crossref]
  24. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11(9), 2494–2502 (1994).
    [Crossref]
  25. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [Crossref]
  26. C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
    [Crossref]

2017 (1)

2015 (3)

2014 (5)

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

D. Cheng, Y. Wang, C. Xu, W. Song, and G. Jin, “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics,” Opt. Express 22(17), 20705–20719 (2014).
[Crossref] [PubMed]

H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
[Crossref] [PubMed]

C. P. Chen, Y. Su, and C. G. Jhun, “Recent advances in holographic recording media for dynamic holographic display,” J. Opt. Photonics 1(1), 1–8 (2014).
[Crossref]

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

2013 (1)

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

2010 (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

2009 (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2001 (1)

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

1997 (1)

1995 (1)

1994 (1)

1993 (1)

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1–4), 1–5 (1993).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
[Crossref] [PubMed]

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.
[Crossref]

Bräuer, R.

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1–4), 1–5 (1993).
[Crossref]

Bryngdahl, O.

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1–4), 1–5 (1993).
[Crossref]

Chen, C. P.

L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
[Crossref]

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

C. P. Chen, Y. Su, and C. G. Jhun, “Recent advances in holographic recording media for dynamic holographic display,” J. Opt. Photonics 1(1), 1–8 (2014).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Chen, H.-S.

Chen, P.-J.

Cheng, D.

D. Cheng, Y. Wang, C. Xu, W. Song, and G. Jin, “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics,” Opt. Express 22(17), 20705–20719 (2014).
[Crossref] [PubMed]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Clamp, J. H.

Friesem, A. A.

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Gao, H.

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Gleeson, H. F.

Han, J.

He, G.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

He, Z.

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Hu, B.

Hua, H.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Jhun, C. G.

C. P. Chen, Y. Su, and C. G. Jhun, “Recent advances in holographic recording media for dynamic holographic display,” J. Opt. Photonics 1(1), 1–8 (2014).
[Crossref]

Jin, G.

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Kiyokawa, K.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

Kurata, Y.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Li, A.

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Li, L.

Li, X.

N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu, and Y. Wang, “Improved holographic waveguide display system,” Appl. Opt. 54(12), 3645–3649 (2015).
[Crossref]

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Li, Y.

L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
[Crossref]

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Lin, Y.-H.

Liu, J.

Liu, S.

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Lu, J.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Maimone, A.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Milton, H. E.

Morgan, P. B.

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Noponen, E.

Ohno, H.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

Qian, L.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Reinhorn, S.

Shi, Q.

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Song, W.

Su, Y.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

C. P. Chen, Y. Su, and C. G. Jhun, “Recent advances in holographic recording media for dynamic holographic display,” J. Opt. Photonics 1(1), 1–8 (2014).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Turunen, J.

Wang, K.

Wang, X.

Wang, Y.

Wang, Y.-J.

Wu, Y.

Xiong, Y.

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Xu, C.

Yang, F.

Ye, Z.

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Yu, B.

Zhang, N.

Zhang, Z.

Zhou, L.

ACM Trans. Graph. (1)

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Appl. Opt. (2)

Comput. Graph. (1)

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

J. Disp. Technol. (1)

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry-Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

J. Opt. Photonics (1)

C. P. Chen, Y. Su, and C. G. Jhun, “Recent advances in holographic recording media for dynamic holographic display,” J. Opt. Photonics 1(1), 1–8 (2014).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Liq. Cryst. (1)

Z. He, C. P. Chen, H. Gao, Q. Shi, S. Liu, X. Li, Y. Xiong, J. Lu, G. He, and Y. Su, “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal,” Liq. Cryst. 41(5), 673–684 (2014).
[Crossref]

Opt. Commun. (2)

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1–4), 1–5 (1993).
[Crossref]

Y. Xiong, Z. He, C. P. Chen, X. Li, A. Li, Z. Ye, J. Lu, G. He, and Y. Su, “Coherent backlight system for flat-panel holographic 3D display,” Opt. Commun. 296, 41–46 (2013).
[Crossref]

Opt. Express (4)

Other (9)

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Addison-Wesley, 2006).

Wikipedia, “Presbyopia,” https://en.wikipedia.org/wiki/Presbyopia .

J. W. Goodman, Introduction to Fourier Optics 3rd Edition (Roberts & Company Publishers, 2004).

M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” SID Display Week (2016), pp. 164–167.

C. P. Chen, Z. Zhang, and X. Yang, “A head-mounted smart display device for augmented reality,” CN Patent 201610075988.7 (2016).

L. Zhou, C. P. Chen, Y. Wu, K. Wang, and Z. Zhang, “See-through near-eye displays for visual impairment,” The 23rd International Display Workshops in conjunction with Asia Display (2016), pp. 1114–1115.

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.
[Crossref]

Goldman Sachs Global Investment Research, “Virtual & augmented reality: understanding the race for the next computing platform,” http://www.goldmansachs.com/our-thinking/pages/virtual-and-augmented-reality-report.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic drawing of the proposed monocular see-through NED. W is the horizontal width of the waveguide, measured horizontally. P is the edge width of the waveguide, left for attaching the pico projector. D is the edge thickness of waveguide. θ is the folding angle of the chief optical axis caused by the IVH and OVH.

Fig. 2
Fig. 2

Unfolded optical path diagrams for the (a) real and (b) virtual images. The projection lens and plano-convex waveguide are regarded as a convex lens and a plano-convex lens respectively to simplify the light path modeling.

Fig. 3
Fig. 3

Illustration of field of views for both real and virtual images. FOVr is defined as the angular extent of the waveguide, whereas FOVv is defined as the angular extent of the image of microdisplay.

Fig. 4
Fig. 4

Image distance versus the diopter of projection lens. When Pp = 104.98 m−1, the image distance s″ is 3 m.

Fig. 5
Fig. 5

Lateral magnification versus the diopter of projection lens. When Pp = 104.98 m−1, the lateral magnification M is 296.

Fig. 6
Fig. 6

The numbering of surfaces. The object represents the microdisplay. Surfaces 1 to 7 comprise the 4-element projection lens. Surfaces 8 to 9 comprise the waveguide.

Fig. 7
Fig. 7

Calculated DE with respect to incident angles. The FWHW of the multiplexed volume holograms is 54°.

Fig. 8
Fig. 8

Calculated MTFs of (a) real and (b) virtual images. For real images, MTFs for all angles are above 0.4 at 66 cycles/mm. For virtual images, MTFs for all angles are above 0.4 at 36 cycles/mm.

Fig. 9
Fig. 9

Calculated distortion grids of (a) real and (b) virtual images. For real images, the distortion is less than 0.15%. For virtual images, the distortion is less than 3.90%.

Fig. 10
Fig. 10

(a) Original, (b) real, and (c) virtual images. By comparing the original and simulated images, it can be seen that the real image is nearly identical to the original one, while the virtual image is reduced in brightness and distorted around the corners.

Tables (5)

Tables Icon

Table 1 Design parameters for the plano-convex waveguide

Tables Icon

Table 2 Optimized parameters for the proposed NED

Tables Icon

Table 3 Parameters for aspherical surfaces

Tables Icon

Table 4 Parameters of volume holograms for multiplexing

Tables Icon

Table 5 Parameters for calculating FOV

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P w =( n1 )[ 1 R 1 1 R 2 + ( n1 ) d w n R 1 R 2 ]
P w = 1n R 2
1 s 1 + 1 s' = P p
1 | s' |+ s 2 + 1 s" = P w
s"= s 1 s 2 + s 1 s 2 P p s 1 P w s 2 P w s 1 P p + s 1 s 2 P p P w +1
M= s's" s 1 ( | s' |+ s 2 ) = 1 s 1 P w s 2 P w s 1 P p + s 1 s 2 P p P w +1
FO V r =2arctan( W 2 + H 2 2 s 3 )
FO V v =2arctan( d m M 2( s"+ s 3 ) )
sin θ B = mλ 2Λ
η= i=1 5 η i ij 5 η i η j + ijk 5 η i η j η k ijkm 5 η i η j η k η m + η 1 η 2 η 3 η 4 η 5
Γ=1 σ η avg