Abstract

A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10−4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser

Shin'ichiro Hayashi, Takayuki Shibuya, Hiroshi Sakai, Takunori Taira, Chiko Otani, Yuichi Ogawa, and Kodo Kawase
Appl. Opt. 48(15) 2899-2902 (2009)

Energy scaling of terahertz-wave parametric sources

Guanqi Tang, Zhenhua Cong, Zengguang Qin, Xingyu Zhang, Weitao Wang, Dong Wu, Ning Li, Qiang Fu, Qingming Lu, and Shaojun Zhang
Opt. Express 23(4) 4144-4152 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
    [Crossref]
  2. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO4 crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
    [Crossref] [PubMed]
  3. C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
    [Crossref]
  4. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output,” Opt. Express 24(10), 10254–10264 (2016).
    [Crossref] [PubMed]
  5. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
    [Crossref] [PubMed]
  6. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [Crossref]
  7. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
    [Crossref] [PubMed]
  8. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
    [Crossref] [PubMed]
  9. K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).
  10. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [Crossref] [PubMed]
  11. K. Murate, S. I. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
    [Crossref]
  12. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  13. J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
    [Crossref]
  14. Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
    [Crossref]
  15. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  16. I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurements of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.
  17. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
    [Crossref]
  18. S. Kojima, “Composition variation of optical phonon damping in lithium niobate crystals,” Jpn. J. Appl. Phys. 32(Part 1, No. 9B), 4373–4376 (1993).
    [Crossref]
  19. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, and O. F. Schirmer, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. Adv. Mater. 56, 103–108 (1993).

2016 (3)

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output,” Opt. Express 24(10), 10254–10264 (2016).
[Crossref] [PubMed]

K. Murate, S. I. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

2014 (4)

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
[Crossref] [PubMed]

W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO4 crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
[Crossref] [PubMed]

2006 (1)

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2002 (2)

K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

2001 (1)

2000 (1)

J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
[Crossref]

1999 (1)

1997 (1)

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

1993 (2)

S. Kojima, “Composition variation of optical phonon damping in lithium niobate crystals,” Jpn. J. Appl. Phys. 32(Part 1, No. 9B), 4373–4376 (1993).
[Crossref]

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, and O. F. Schirmer, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. Adv. Mater. 56, 103–108 (1993).

Chen, T. N.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Chen, X.

Cong, Z.

Duan, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Feng, H.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Grachev, V. G.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, and O. F. Schirmer, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. Adv. Mater. 56, 103–108 (1993).

Hayashi, S. I.

K. Murate, S. I. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Ikari, T.

Imai, K.

Ito, H.

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Ito, R.

Karino, K.

K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).

J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
[Crossref]

Kawase, K.

K. Murate, S. I. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Kitamoto, A.

Kojima, S.

S. Kojima, “Composition variation of optical phonon damping in lithium niobate crystals,” Jpn. J. Appl. Phys. 32(Part 1, No. 9B), 4373–4376 (1993).
[Crossref]

Kokanyan, E. P.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, and O. F. Schirmer, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. Adv. Mater. 56, 103–108 (1993).

Kondo, T.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Lee, A. J.

Li, J. Q.

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Li, N.

Li, Z. X.

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Liu, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Liu, P. X.

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Liu, Z.

Lu, Q.

Malovichko, G. I.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, and O. F. Schirmer, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. Adv. Mater. 56, 103–108 (1993).

Minamide, H.

Murate, K.

K. Murate, S. I. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

Ortega, T. A.

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Pask, H. M.

Péter, Á.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Qin, Z.

Sahashi, I.

K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).

Sato, M.

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Schirmer, O. F.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, and O. F. Schirmer, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. Adv. Mater. 56, 103–108 (1993).

Shi, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

Shikata, J. I.

J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
[Crossref]

Shirane, M.

Shoji, I.

Spence, D. J.

Tang, G.

Taniuchi, T.

J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Wang, C.

Wang, W.

Wang, Y.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Wang, Y. Y.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Xu, D.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Xu, D. G.

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Xu, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yan, C.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Yan, D.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yao, J.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yao, J. Q.

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Zhang, X.

Zhang, Y.

Zhong, K.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Adv. Mater. (1)

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, and O. F. Schirmer, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. Adv. Mater. 56, 103–108 (1993).

Appl. Phys. Express (1)

K. Murate, S. I. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

Appl. Phys. Lett. (2)

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Electron. Commun. Jpn. (1)

K. Karino, J. Shikata, K. Kawase, H. Ito, and I. Sahashi, “Terahertz-wave parametric generation characteristics of MgO:LiNbO3,” Electron. Commun. Jpn. 85, 22–29 (2002).

IEEE T. Microw. Theory (1)

J. I. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE T. Microw. Theory 48(4), 653–661 (2000).
[Crossref]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Kojima, “Composition variation of optical phonon damping in lithium niobate crystals,” Jpn. J. Appl. Phys. 32(Part 1, No. 9B), 4373–4376 (1993).
[Crossref]

Laser Phys. (2)

J. Q. Li, Y. Y. Wang, D. G. Xu, Z. X. Li, C. Yan, P. X. Liu, and J. Q. Yao, “A study of the multi-mode pumping of terahertz parametric oscillators,” Laser Phys. 24(10), 105401 (2014).
[Crossref]

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurements of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) The schematic diagram of the MgO:SLN TPO. (b) The crystal configuration and the cutting angles.

Fig. 2
Fig. 2

The angle-tuning characteristics of the generated THz wave frequency and Stokes wavelength in the MgO:SLN TPO at the pump energy of 165 mJ.

Fig. 3
Fig. 3

(a) Comparison of the two detection methods for THz frequency. (b)The detected THz wavelength using the scanning Fabry–Perot etalon at the tuning angle of 3.6°. (c) The measured Stokes wavelength by an optical spectrum analyzer at the tuning angle of 3.6°.

Fig. 4
Fig. 4

The terahertz-wave output energies of the MgO:SLN TPO under the pump energy of 165 mJ/pulse.

Fig. 5
Fig. 5

The THz output energies of the MgO:SLN TPO and the MgO:CLN TPO under different pump energies at 1.60 THz.

Fig. 6
Fig. 6

The detected THz amplitude signal from two kinds of TPOs under different number of attenuators. Inset: the attenuation rate of each pieces of attenuators for two kinds of TPOs.

Fig. 7
Fig. 7

The Raman spectra of A1-symmetry mode in 1mol.% MgO:SLN crystal and 5mol.% MgO:SLN crystal. Inset: the linewidth of the lowest order A1-symmetry mode (252 cm−1) for two kinds of crystals by Lorentz fitting.

Fig. 8
Fig. 8

The Stokes wave intensity from two kinds of TPOs under the same conditions.

Fig. 9
Fig. 9

(a), (b), (c) and (d) THz energy distribution of MgO:SLN TPO measured at 4cm, 5cm, 6cm and 7cm from the output surface, respectively. (e) Beam pattern of the THz wave measured at 4cm in the vertical and horizontal directions.

Fig. 10
Fig. 10

The THz output stability of the MgO:SLN TPO during 65 minutes.