Abstract

Chemical stoichiometric Ge-As-S glasses were prepared, and their thermal properties, refractive index (n), optical bandgap, Raman gain, and femtosecond laser damage were examined. Results revealed that the n and density (ρ) of the glasses decreased as Ge concentration increased, whereas the bandgap and glass transition temperature (Tg) increased. The Raman gain coefficients (gR) of the samples were calculated on the basis of spontaneous Raman scattering spectra. gR decreased from 2.79 × 10−11 m/W for As2S3 to 1.06 × 10−11 m/W for GeS2 as Ge concentration increased. However, the smallest gR was 100 times higher than that of fused silica (0.89 × 10−13 m/W). When these glasses were irradiated by a laser with a pulse width of 150 fs and a power of 33 mW at 3 μm, the damaged area and depth decreased and the damage threshold increased gradually as Ge concentration increased. Raman spectra and composition analysis indicated that surface oxidation probably occurred and sulfur gasified at a high laser power. Although the gR decreased as Ge was added, the laser damage threshold of Ge-As-S glasses was higher than that of the As2S3 glass. Thus, these glasses are potential materials for Raman gain media.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers

Tomas Kohoutek, Xin Yan, Teruo W. Shiosaka, Spyros N. Yannopoulos, Athanassios Chrissanthopoulos, Takenobu Suzuki, and Yasutake Ohishi
J. Opt. Soc. Am. B 28(9) 2284-2290 (2011)

Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses

Robert Stegeman, George Stegeman, Peter Delfyett Jr., Laeticia Petit, Nathan Carlie, Kathleen Richardson, and Michel Couzi
Opt. Express 14(24) 11702-11708 (2006)

Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient

Ojas P. Kulkarni, Chenan Xia, Dong Joon Lee, Malay Kumar, Amos Kuditcher, Mohammed N. Islam, Fred L. Terry, Mike J. Freeman, Bruce G. Aitken, Stephen C. Currie, Joseph E. McCarthy, Mark L. Powley, and Dan A. Nolan
Opt. Express 14(17) 7924-7930 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys., A Mater. Sci. Process. 11, 209–231 (1976).
  2. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2008).
  3. M. N. Islam, Raman Amplifiers for Telecommunications (Springer, 2004).
  4. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
  5. L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. Kung, “IR supercontinuum source,” (US 7133590 B2, 2006).
  6. H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).
  7. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
  8. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
  9. J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
  10. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, “Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient,” Opt. Express 14(17), 7924–7930 (2006).
    [PubMed]
  11. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
  12. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36(12), 2351–2353 (2011).
    [PubMed]
  13. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [PubMed]
  14. M. Kincl and L. Tichy, “Some physical properties of GexAsxS1−2x glasses,” Mater. Chem. Phys. 103, 78–88 (2007).
  15. E. F. Schubert and J. K. Kim, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi 244, 1–2 (2009).
  16. X. You, “Ionic polarization,” Chin. Sci. Bull. 19, 419–423 (1974).
  17. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
  18. Z. Yang, L. Luo, and W. Chen, “Red color GeSe2-based chalcohalide glasses for infrared optics,” J. Am. Ceram. Soc. 89, 2327–2329 (2006).
  19. L. Kolditz, “Amorphous inorganic materials and glasses,” Z. Phys. Chem. 188, 315–316 (1995).
  20. A. Feltz, Amorphous Inorganic Materials and Glasses (Wiley-VCH, 1993).
  21. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
  22. M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).
  23. A. Hasegawa, “Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process,” Appl. Opt. 23(19), 3302 (1984).
    [PubMed]
  24. T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B 28, 2284–2290 (2011).
  25. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1988).
  26. J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).
  27. Y. Zhao, W. Gao, J. Shao, and Z. Fan, “Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,” Appl. Surf. Sci. 227, 275–281 (2004).
  28. M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
  29. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794(1711) (2001).
  30. E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, “Thermal diffusion in chalcogenide glass irradiated by a train of femtosecond laser pulses,” in International Conference on Transparent Optical Networks (IEEE, 2010), paper We.B4.2.
  31. E. Romanova, A. Konyukhov, S. Muraviov, and G. Gelikonov, “Energy deposition and heat diffusion in the process of chalcogenide glass modification by femtosecond laser pulses,” in European Conference on Integrated Optics (ECIO, 2007), paper ThG19.
  32. D. G. Georgiev, P. Boolchand, and K. A. Jackson, “Intrinsic nanoscale phase separation of bulk As2S3 glass,” Philos. Mag. 83, 2941–2953 (2003).
  33. L. Cai and P. Boolchand, “Nanoscale phase separation of GeS glass,” Philos. Mag. A 82, 1649–1657 (2002).
  34. D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).
  35. Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).
  36. D. T. Kastrissios, G. N. Papatheodorou, and S. N. Yannopoulos, “Vibrational modes in the athermally photoinduced fluidity regime of glassy As2S3,” Phys. Rev. B 64, 214203 (2001).
  37. A. Grzechnik, “Compressibility and vibrational modes in solid As4O6,” J. Solid State Chem. 144, 416–422 (1999).
  38. G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).

2015 (1)

2013 (1)

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).

2011 (3)

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).

2009 (3)

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).

E. F. Schubert and J. K. Kim, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi 244, 1–2 (2009).

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).

2008 (1)

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

2007 (1)

M. Kincl and L. Tichy, “Some physical properties of GexAsxS1−2x glasses,” Mater. Chem. Phys. 103, 78–88 (2007).

2006 (2)

2004 (2)

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

Y. Zhao, W. Gao, J. Shao, and Z. Fan, “Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,” Appl. Surf. Sci. 227, 275–281 (2004).

2003 (1)

D. G. Georgiev, P. Boolchand, and K. A. Jackson, “Intrinsic nanoscale phase separation of bulk As2S3 glass,” Philos. Mag. 83, 2941–2953 (2003).

2002 (2)

L. Cai and P. Boolchand, “Nanoscale phase separation of GeS glass,” Philos. Mag. A 82, 1649–1657 (2002).

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).

2001 (4)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794(1711) (2001).

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).

D. T. Kastrissios, G. N. Papatheodorou, and S. N. Yannopoulos, “Vibrational modes in the athermally photoinduced fluidity regime of glassy As2S3,” Phys. Rev. B 64, 214203 (2001).

2000 (1)

D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).

1999 (2)

A. Grzechnik, “Compressibility and vibrational modes in solid As4O6,” J. Solid State Chem. 144, 416–422 (1999).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).

1998 (2)

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

1995 (1)

L. Kolditz, “Amorphous inorganic materials and glasses,” Z. Phys. Chem. 188, 315–316 (1995).

1984 (1)

1976 (1)

M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys., A Mater. Sci. Process. 11, 209–231 (1976).

1974 (1)

X. You, “Ionic polarization,” Chin. Sci. Bull. 19, 419–423 (1974).

Aggarwal, I. D.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).

Aitken, B. G.

Angelis, C. D.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

Arsova, D.

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).

Barthélémy, A.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

Boolchand, P.

D. G. Georgiev, P. Boolchand, and K. A. Jackson, “Intrinsic nanoscale phase separation of bulk As2S3 glass,” Philos. Mag. 83, 2941–2953 (2003).

L. Cai and P. Boolchand, “Nanoscale phase separation of GeS glass,” Philos. Mag. A 82, 1649–1657 (2002).

Boulmetis, Y. C.

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).

Brandon Shaw, L.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794(1711) (2001).

Brunéel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Cai, L.

L. Cai and P. Boolchand, “Nanoscale phase separation of GeS glass,” Philos. Mag. A 82, 1649–1657 (2002).

Cardinal, T.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Chen, H.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Chen, M.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Chen, W.

Z. Yang, L. Luo, and W. Chen, “Red color GeSe2-based chalcohalide glasses for infrared optics,” J. Am. Ceram. Soc. 89, 2327–2329 (2006).

Chen, Y.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Cheng, Z.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Choi, D. Y.

Chrissanthopoulos, A.

Cochain, B.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).

Cormier, L.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).

Couzi, M.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Currie, S. C.

Dai, Z.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Fan, Z.

Y. Zhao, W. Gao, J. Shao, and Z. Fan, “Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,” Appl. Surf. Sci. 227, 275–281 (2004).

Freeman, M. J.

Furniss, D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

Gai, X.

Gao, W.

Y. Zhao, W. Gao, J. Shao, and Z. Fan, “Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,” Appl. Surf. Sci. 227, 275–281 (2004).

Georgiev, D. G.

D. G. Georgiev, P. Boolchand, and K. A. Jackson, “Intrinsic nanoscale phase separation of bulk As2S3 glass,” Philos. Mag. 83, 2941–2953 (2003).

Ger, J.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Grzechnik, A.

A. Grzechnik, “Compressibility and vibrational modes in solid As4O6,” J. Solid State Chem. 144, 416–422 (1999).

Guo, W.

Hasegawa, A.

He, Y.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).

Henderson, G. S.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).

Islam, M. N.

Jackson, K. A.

D. G. Georgiev, P. Boolchand, and K. A. Jackson, “Intrinsic nanoscale phase separation of bulk As2S3 glass,” Philos. Mag. 83, 2941–2953 (2003).

Jasapara, J.

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).

Jin, X.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Kastrissios, D. T.

D. T. Kastrissios, G. N. Papatheodorou, and S. N. Yannopoulos, “Vibrational modes in the athermally photoinduced fluidity regime of glassy As2S3,” Phys. Rev. B 64, 214203 (2001).

Kautek, W.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Kim, J. K.

E. F. Schubert and J. K. Kim, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi 244, 1–2 (2009).

Kincl, M.

M. Kincl and L. Tichy, “Some physical properties of GexAsxS1−2x glasses,” Mater. Chem. Phys. 103, 78–88 (2007).

Kohoutek, T.

Kolditz, L.

L. Kolditz, “Amorphous inorganic materials and glasses,” Z. Phys. Chem. 188, 315–316 (1995).

Krausz, F.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Kuditcher, A.

Kulkarni, O. P.

Kumar, M.

Lee, D. J.

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

Lenzner, M.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Li, J.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).

Liu, Y.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Lucas, J.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

Luo, H.

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).

Luo, L.

Z. Yang, L. Luo, and W. Chen, “Red color GeSe2-based chalcohalide glasses for infrared optics,” J. Am. Ceram. Soc. 89, 2327–2329 (2006).

Luther-Davies, B.

Madden, S.

Maier, M.

M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys., A Mater. Sci. Process. 11, 209–231 (1976).

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794(1711) (2001).

McCarthy, J. E.

Monro, T. M.

Mourou, G.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Nampoothiri, A. V.

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).

Nesheva, D.

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).

Neuville, D. R.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).

Nolan, D. A.

O’Donnell, M. D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

Ohishi, Y.

Papatheodorou, G. N.

D. T. Kastrissios, G. N. Papatheodorou, and S. N. Yannopoulos, “Vibrational modes in the athermally photoinduced fluidity regime of glassy As2S3,” Phys. Rev. B 64, 214203 (2001).

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Perakis, A.

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).

Powley, M. L.

Qi, S.

Quemard, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

Raptis, C.

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

Richardson, K.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Ristau, D.

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).

Rivero, C.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

Rudolph, W.

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).

Sanghera, J. S.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).

Sartania, S.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794(1711) (2001).

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi 244, 1–2 (2009).

Seddon, A. B.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

Shao, J.

Y. Zhao, W. Gao, J. Shao, and Z. Fan, “Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,” Appl. Surf. Sci. 227, 275–281 (2004).

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).

Shiosaka, T. W.

Skordeva, E.

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).

Smektala, F.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

Spielmann, C.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Starke, K.

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).

Stolen, R.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

Stryland, E. V.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

Suzuki, T.

Terry, F. L.

Tichy, L.

M. Kincl and L. Tichy, “Some physical properties of GexAsxS1−2x glasses,” Mater. Chem. Phys. 103, 78–88 (2007).

Uuml, K.

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Vateva, E.

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).

Wang, R.

White, R. T.

Xia, C.

Yan, X.

Yang, Y.

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Yang, Z.

Yannopoulos, S. N.

T. Kohoutek, X. Yan, T. W. Shiosaka, S. N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Soc. Am. B 28, 2284–2290 (2011).

D. T. Kastrissios, G. N. Papatheodorou, and S. N. Yannopoulos, “Vibrational modes in the athermally photoinduced fluidity regime of glassy As2S3,” Phys. Rev. B 64, 214203 (2001).

You, X.

X. You, “Ionic polarization,” Chin. Sci. Bull. 19, 419–423 (1974).

Yu, Y.

Zhai, C.

Zhang, B.

Zhao, Y.

Y. Zhao, W. Gao, J. Shao, and Z. Fan, “Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,” Appl. Surf. Sci. 227, 275–281 (2004).

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

M. Maier, “Applications of stimulated Raman scattering,” Appl. Phys., A Mater. Sci. Process. 11, 209–231 (1976).

Appl. Surf. Sci. (1)

Y. Zhao, W. Gao, J. Shao, and Z. Fan, “Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation,” Appl. Surf. Sci. 227, 275–281 (2004).

C. R. Chim. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).

Chin. Sci. Bull. (1)

X. You, “Ionic polarization,” Chin. Sci. Bull. 19, 419–423 (1974).

Glass Phys. Chem. (1)

D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, and A. Perakis, “A comparative Raman study of the local structure in (Ge2S3)x(As2S3)1-x and (GeS2)x(As2S3)1−x glasses,” Glass Phys. Chem. 26, 247–251 (2000).

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).

IEEE Photonics J. (1)

H. Luo, J. Li, J. Li, Y. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,” IEEE Photonics J. 5, 2700211 (2013).

J. Am. Ceram. Soc. (1)

Z. Yang, L. Luo, and W. Chen, “Red color GeSe2-based chalcohalide glasses for infrared optics,” J. Am. Ceram. Soc. 89, 2327–2329 (2006).

J. Non-Cryst. Solids (4)

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthélémy, and C. D. Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).

Y. C. Boulmetis, A. Perakis, C. Raptis, D. Arsova, E. Vateva, D. Nesheva, and E. Skordeva, “Composition and temperature dependence of the low-frequency Raman scattering in Ge–As–S glasses,” J. Non-Cryst. Solids 347, 187–196 (2004).

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355, 468–474 (2009).

J. Opt. Soc. Am. B (1)

J. Solid State Chem. (1)

A. Grzechnik, “Compressibility and vibrational modes in solid As4O6,” J. Solid State Chem. 144, 416–422 (1999).

Mater. Chem. Phys. (1)

M. Kincl and L. Tichy, “Some physical properties of GexAsxS1−2x glasses,” Mater. Chem. Phys. 103, 78–88 (2007).

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794(1711) (2001).

Nat. Photonics (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).

Opt. Commun. (1)

J. Li, Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (2)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951 (2008).

Philos. Mag. (1)

D. G. Georgiev, P. Boolchand, and K. A. Jackson, “Intrinsic nanoscale phase separation of bulk As2S3 glass,” Philos. Mag. 83, 2941–2953 (2003).

Philos. Mag. A (1)

L. Cai and P. Boolchand, “Nanoscale phase separation of GeS glass,” Philos. Mag. A 82, 1649–1657 (2002).

Phys. Rev. B (2)

D. T. Kastrissios, G. N. Papatheodorou, and S. N. Yannopoulos, “Vibrational modes in the athermally photoinduced fluidity regime of glassy As2S3,” Phys. Rev. B 64, 214203 (2001).

J. Jasapara, A. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63, 045117 (2001).

Phys. Rev. Lett. (1)

M. Lenzner, K. Uuml, J. Ger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).

Phys. Status Solidi (1)

E. F. Schubert and J. K. Kim, “Low-refractive-index materials: A new class of optical thin-film materials,” Phys. Status Solidi 244, 1–2 (2009).

Z. Phys. Chem. (1)

L. Kolditz, “Amorphous inorganic materials and glasses,” Z. Phys. Chem. 188, 315–316 (1995).

Other (7)

A. Feltz, Amorphous Inorganic Materials and Glasses (Wiley-VCH, 1993).

L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. Kung, “IR supercontinuum source,” (US 7133590 B2, 2006).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2008).

M. N. Islam, Raman Amplifiers for Telecommunications (Springer, 2004).

E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, “Thermal diffusion in chalcogenide glass irradiated by a train of femtosecond laser pulses,” in International Conference on Transparent Optical Networks (IEEE, 2010), paper We.B4.2.

E. Romanova, A. Konyukhov, S. Muraviov, and G. Gelikonov, “Energy deposition and heat diffusion in the process of chalcogenide glass modification by femtosecond laser pulses,” in European Conference on Integrated Optics (ECIO, 2007), paper ThG19.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Refractive index of Ge-As-S glasses at 2~12 μm and (b) dependence of refractive index at 2 μm on glass density.

Fig. 2
Fig. 2

Absorption spectra of Ge-As-S glasses, the horizontal dotted line indicates the bandgap wavelengths; sample thickness, 1 mm.

Fig. 3
Fig. 3

(a) Raman spectra of the studied Ge-As-S glasses with the inset Raman spectrum of SiO2 and (b) their Raman gain coefficient spectra compared with the spectra of silica glasses.

Fig. 4
Fig. 4

Damage morphology under optical microscope (left column), 3-D mode (middle column), and SEM (right column).

Fig. 5
Fig. 5

(a)Raman spectra of the as-prepared samples (AP, dotted line) and after fs laser damage (DM, solid line); R represents realgar. (b) (c) and (d) (e) are the deconvolution of the bands in the high frequency region of samples S1 and S6.

Fig. 6
Fig. 6

Content change of six samples before and after laser damage. (The gray, red, yellow, and blue represented Ge, As, S and O, respectively.)

Fig. 7
Fig. 7

EDS of the damaged area (a), the selected region for mapping (Mag.: 6000x) (b), and the mapping of Ge (c), S (d), As(e), and O (f).

Tables (1)

Tables Icon

Table 1 Glass compositions, Tg, ρ, bandgap, n, gR, and laser damage threshold.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g R s = I corr × ( n Si O 2 n Sam ) 2 × g RSi O 2
I corr = I u × F R-SO / F BE ( ν,T )
F R-SO = ( 1+ n Sam ) 4 ( 1+ n Si O 2 ) 4
F BE ( ν,T )=1+ [ exp( hν / kT )1 ] 1
n 2 ( λ )=1+ b 1 λ 2 λ 2 c 1 + b 2 λ 2 λ 2 c 2 + b 3 λ 2 λ 2 c 3
I= P π ( d/2 ) 2

Metrics