Abstract

Hydrogen gas sensing properties of Pt-WO3 films on spiral microstructured fiber Bragg grating (FBG) has been demonstrated. Pt-WO3 film was prepared by hydrothermal method. The spiral microsturctured FBG was fabricated using femtosecond laser. Spiral microstructure FBG hydrogen sensor can detect hydrogen concentration from 0.02% H2 to 4% H2 at room temperature, and the response time is shortened from a few minutes to 10~30 s. Double spiral microstructure at pitch 60 μm and sputtered with 2 μm Pt-WO3 film recorded hydrogen sensitivity of 522 pm/%(v/v) H2 responding to hydrogen gas in air. This translated to approximately 2~4 times higher than the unprocessed standard FBG. The humidity has little effect on the sensing property. The sensor has fast response time, good stability, large detection range and has the good prospect of practical application for hydrogen leak detection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration

Shuijing Tang, Bo Zhang, Zhi Li, Jixiang Dai, Gaopeng Wang, and Minghong Yang
Opt. Express 23(17) 22826-22835 (2015)

Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film

Jixiang Dai, Wen Peng, Gaopeng Wang, Feng Xiang, Yuhuan Qin, Min Wang, Yutang Dai, Minghong Yang, Hui Deng, and Pengcheng Zhang
Opt. Express 25(3) 2009-2015 (2017)

Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials

Jixiang Dai, Minghong Yang, Yun Chen, Kun Cao, Hansheng Liao, and Pengcheng Zhang
Opt. Express 19(7) 6141-6148 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. P. Jain, “Hydrogen the fuel for 21st century,” Int. J. Hydrogen Energy 34(17), 7368–7378 (2009).
    [Crossref]
  2. Y. R. Kim, H. J. Lee, S. Kim, and I. S. Jeung, “A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube,” Proc. Combust. Inst. 34(2), 2057–2064 (2013).
    [Crossref]
  3. D. A. Crowl and Y. D. Jo, “The hazards and risks of hydrogen,” J. Loss Prev. Process Ind. 20(2), 158–164 (2007).
    [Crossref]
  4. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
    [Crossref]
  5. N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
    [Crossref]
  6. S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
    [Crossref]
  7. J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
    [Crossref]
  8. X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
    [Crossref]
  9. J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
    [Crossref]
  10. L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
    [Crossref]
  11. J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
    [Crossref]
  12. M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
    [Crossref] [PubMed]
  13. A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
    [Crossref]
  14. C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
    [Crossref] [PubMed]
  15. J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
    [Crossref]
  16. Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
    [Crossref]
  17. B. Xu, C. L. Zhao, F. Yang, H. Gong, D. N. Wang, J. Dai, and M. Yang, “Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating,” Opt. Lett. 41(7), 1594–1597 (2016).
    [Crossref] [PubMed]
  18. Y. Wang, D. N. Wang, F. Yang, Z. Li, and M. Yang, “Sensitive hydrogen sensor based on selectively infiltrated photonic crystal fiber with Pt-loaded WO3 coating,” Opt. Lett. 39(13), 3872–3875 (2014).
    [Crossref] [PubMed]
  19. S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
    [Crossref]
  20. W. Zeng, Y. Li, B. Miao, and K. Pan, “Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies,” Physica E 56, 183–188 (2014).
    [Crossref]
  21. C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Catalytic fiber Bragg grating sensor for hydrogen leak detection in air,” IEEE Photonics Technol. Lett. 20(2), 96–98 (2008).
    [Crossref]
  22. S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
    [Crossref]
  23. S. Magne, S. Rougeault, M. Vilela, and P. Ferdinand, “State-of-strain evaluation with fiber Bragg grating rosettes: application to discrimination between strain and temperature effects in fiber sensors,” Appl. Opt. 36(36), 9437–9447 (1997).
    [Crossref] [PubMed]
  24. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
    [Crossref]
  25. Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
    [Crossref]
  26. R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
    [Crossref]
  27. Y. Yamaguchi, S. Imamura, K. Nishio, and K. Fujimoto, “Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor,” J. Ceram. Soc. Jpn. 124(6), 629–633 (2016).
    [Crossref]

2016 (3)

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

B. Xu, C. L. Zhao, F. Yang, H. Gong, D. N. Wang, J. Dai, and M. Yang, “Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating,” Opt. Lett. 41(7), 1594–1597 (2016).
[Crossref] [PubMed]

Y. Yamaguchi, S. Imamura, K. Nishio, and K. Fujimoto, “Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor,” J. Ceram. Soc. Jpn. 124(6), 629–633 (2016).
[Crossref]

2015 (3)

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
[Crossref]

2014 (5)

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

Y. Wang, D. N. Wang, F. Yang, Z. Li, and M. Yang, “Sensitive hydrogen sensor based on selectively infiltrated photonic crystal fiber with Pt-loaded WO3 coating,” Opt. Lett. 39(13), 3872–3875 (2014).
[Crossref] [PubMed]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

W. Zeng, Y. Li, B. Miao, and K. Pan, “Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies,” Physica E 56, 183–188 (2014).
[Crossref]

2013 (4)

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

Y. R. Kim, H. J. Lee, S. Kim, and I. S. Jeung, “A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube,” Proc. Combust. Inst. 34(2), 2057–2064 (2013).
[Crossref]

2012 (1)

S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
[Crossref]

2011 (1)

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

2010 (3)

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

2009 (1)

I. P. Jain, “Hydrogen the fuel for 21st century,” Int. J. Hydrogen Energy 34(17), 7368–7378 (2009).
[Crossref]

2008 (2)

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
[Crossref] [PubMed]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Catalytic fiber Bragg grating sensor for hydrogen leak detection in air,” IEEE Photonics Technol. Lett. 20(2), 96–98 (2008).
[Crossref]

2007 (1)

D. A. Crowl and Y. D. Jo, “The hazards and risks of hydrogen,” J. Loss Prev. Process Ind. 20(2), 158–164 (2007).
[Crossref]

2005 (1)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

2003 (1)

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

1997 (1)

Aiempanakit, K.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Almeida, J. M.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

Asakura, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Bartelt, H.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

Becker, M.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

Bittencourt, C.

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Boudiba, A.

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

Calavia, R.

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

Cané, C.

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

Caucheteur, C.

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
[Crossref] [PubMed]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Catalytic fiber Bragg grating sensor for hydrogen leak detection in air,” IEEE Photonics Technol. Lett. 20(2), 96–98 (2008).
[Crossref]

Chananonnawathorn, C.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Chen, J.

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

Chindaudom, P.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Coelho, L.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
[Crossref]

Crowl, D. A.

D. A. Crowl and Y. D. Jo, “The hazards and risks of hydrogen,” J. Loss Prev. Process Ind. 20(2), 158–164 (2007).
[Crossref]

Dai, J.

B. Xu, C. L. Zhao, F. Yang, H. Gong, D. N. Wang, J. Dai, and M. Yang, “Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating,” Opt. Lett. 41(7), 1594–1597 (2016).
[Crossref] [PubMed]

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

Dai, Y.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

Debliquy, M.

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
[Crossref] [PubMed]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Catalytic fiber Bragg grating sensor for hydrogen leak detection in air,” IEEE Photonics Technol. Lett. 20(2), 96–98 (2008).
[Crossref]

Deng, S. Z.

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

Eiamchai, P.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Ferdinand, P.

Frazao, O.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
[Crossref]

Fujimoto, K.

Y. Yamaguchi, S. Imamura, K. Nishio, and K. Fujimoto, “Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor,” J. Ceram. Soc. Jpn. 124(6), 629–633 (2016).
[Crossref]

Gong, H.

Gracia, I.

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

Halonen, N.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Hasegawa, T.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Horprathum, M.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Hu, W.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

Huang, C.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

Huang, J.

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Huang, P.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Imamura, S.

Y. Yamaguchi, S. Imamura, K. Nishio, and K. Fujimoto, “Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor,” J. Ceram. Soc. Jpn. 124(6), 629–633 (2016).
[Crossref]

Ionescu, R.

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

Jain, I. P.

I. P. Jain, “Hydrogen the fuel for 21st century,” Int. J. Hydrogen Energy 34(17), 7368–7378 (2009).
[Crossref]

Jantunen, H.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Javahiraly, N.

N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
[Crossref]

Jeung, I. S.

Y. R. Kim, H. J. Lee, S. Kim, and I. S. Jeung, “A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube,” Proc. Combust. Inst. 34(2), 2057–2064 (2013).
[Crossref]

Jo, Y. D.

D. A. Crowl and Y. D. Jo, “The hazards and risks of hydrogen,” J. Loss Prev. Process Ind. 20(2), 158–164 (2007).
[Crossref]

Karanja, J. M.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

Kim, S.

Y. R. Kim, H. J. Lee, S. Kim, and I. S. Jeung, “A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube,” Proc. Combust. Inst. 34(2), 2057–2064 (2013).
[Crossref]

Kim, Y. R.

Y. R. Kim, H. J. Lee, S. Kim, and I. S. Jeung, “A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube,” Proc. Combust. Inst. 34(2), 2057–2064 (2013).
[Crossref]

Konya, Z.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Kordas, K.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Kukkola, J.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Lahem, D.

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
[Crossref] [PubMed]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Catalytic fiber Bragg grating sensor for hydrogen leak detection in air,” IEEE Photonics Technol. Lett. 20(2), 96–98 (2008).
[Crossref]

Lee, H. J.

Y. R. Kim, H. J. Lee, S. Kim, and I. S. Jeung, “A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube,” Proc. Combust. Inst. 34(2), 2057–2064 (2013).
[Crossref]

Leino, A.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Li, J.

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Li, L.

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Li, Y.

W. Zeng, Y. Li, B. Miao, and K. Pan, “Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies,” Physica E 56, 183–188 (2014).
[Crossref]

Li, Z.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

Y. Wang, D. N. Wang, F. Yang, Z. Li, and M. Yang, “Sensitive hydrogen sensor based on selectively infiltrated photonic crystal fiber with Pt-loaded WO3 coating,” Opt. Lett. 39(13), 3872–3875 (2014).
[Crossref] [PubMed]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

Limwichean, S.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Llobet, E.

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

Luo, J. Y.

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

Ma, Z.

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Magne, S.

Mäklin, J.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Malcata, F.

S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
[Crossref]

Malcata, F. X.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

Megret, P.

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Catalytic fiber Bragg grating sensor for hydrogen leak detection in air,” IEEE Photonics Technol. Lett. 20(2), 96–98 (2008).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
[Crossref] [PubMed]

Miao, B.

W. Zeng, Y. Li, B. Miao, and K. Pan, “Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies,” Physica E 56, 183–188 (2014).
[Crossref]

Mohl, M.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

Mozalev, A.

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

Murayama, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

Nakagawa, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

Nakajima, H.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Nishio, K.

Y. Yamaguchi, S. Imamura, K. Nishio, and K. Fujimoto, “Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor,” J. Ceram. Soc. Jpn. 124(6), 629–633 (2016).
[Crossref]

Nuntawong, N.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Okazaki, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

Olivier, M.

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

Oros, C.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Pan, K.

W. Zeng, Y. Li, B. Miao, and K. Pan, “Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies,” Physica E 56, 183–188 (2014).
[Crossref]

Patthanasettakul, V.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Porntheeraphat, S.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Rothhardt, M.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

Rougeault, S.

Samransuksamer, B.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Santos, J.

S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
[Crossref]

Santos, J. L.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

Shchukarev, A.

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

She, J. C.

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

Silva, S.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
[Crossref]

Snyders, R.

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

Song, H.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

Songsiriritthigul, P.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Srichaiyaperk, T.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Sumida, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Tang, J.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

Tomiuchi, Y.

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

Tsuji, N.

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

Tuantranont, A.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Umek, P.

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

Vazquez, R.

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

Vilela, M.

Wang, D. N.

Wang, G.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

Wang, Y.

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

Y. Wang, D. N. Wang, F. Yang, Z. Li, and M. Yang, “Sensitive hydrogen sensor based on selectively infiltrated photonic crystal fiber with Pt-loaded WO3 coating,” Opt. Lett. 39(13), 3872–3875 (2014).
[Crossref] [PubMed]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

Washiya, M.

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

Wisitsoraat, A.

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Xu, B.

Xu, N. S.

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

Yamaguchi, Y.

Y. Yamaguchi, S. Imamura, K. Nishio, and K. Fujimoto, “Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor,” J. Ceram. Soc. Jpn. 124(6), 629–633 (2016).
[Crossref]

Yang, F.

Yang, M.

B. Xu, C. L. Zhao, F. Yang, H. Gong, D. N. Wang, J. Dai, and M. Yang, “Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating,” Opt. Lett. 41(7), 1594–1597 (2016).
[Crossref] [PubMed]

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

Y. Wang, D. N. Wang, F. Yang, Z. Li, and M. Yang, “Sensitive hydrogen sensor based on selectively infiltrated photonic crystal fiber with Pt-loaded WO3 coating,” Opt. Lett. 39(13), 3872–3875 (2014).
[Crossref] [PubMed]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

Yang, Z.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

Zeng, W.

W. Zeng, Y. Li, B. Miao, and K. Pan, “Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies,” Physica E 56, 183–188 (2014).
[Crossref]

Zhang, C.

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

Zhang, G.

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Zhang, Y.

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

Zhao, C. L.

Zhao, Q.

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Zhong, L.

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Zhou, X.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

Zhu, L. F.

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

Zhuang, Z.

Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, and W. Hu, “Fiber optic hydrogen sensor based on Fabry–Perot interferometer coated with Sol-Gel Pt/WO3 coating,” J. Lightwave Technol. 33(12), 2530–2534 (2015).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

Zou, M.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai, S. Limwichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, and P. Chindaudom, “Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering,” ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (2)

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Catalytic fiber Bragg grating sensor for hydrogen leak detection in air,” IEEE Photonics Technol. Lett. 20(2), 96–98 (2008).
[Crossref]

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photonics Technol. Lett. 25(4), 401–403 (2013).
[Crossref]

IEEE Sens. J. (1)

S. Silva, L. Coelho, O. Frazao, J. Santos, and F. Malcata, “A review of palladium-based fiber-optic sensors for molecular hydrogen detection,” IEEE Sens. J. 12(1), 93–102 (2012).
[Crossref]

Int. J. Hydrogen Energy (2)

I. P. Jain, “Hydrogen the fuel for 21st century,” Int. J. Hydrogen Energy 34(17), 7368–7378 (2009).
[Crossref]

A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M. Olivier, and M. Debliquy, “Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies,” Int. J. Hydrogen Energy 38(5), 2565–2577 (2013).
[Crossref]

J. Ceram. Soc. Jpn. (1)

Y. Yamaguchi, S. Imamura, K. Nishio, and K. Fujimoto, “Influence of temperature and humidity on the electrical sensing of Pt/WO3 thin film hydrogen gas sensor,” J. Ceram. Soc. Jpn. 124(6), 629–633 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Loss Prev. Process Ind. (1)

D. A. Crowl and Y. D. Jo, “The hazards and risks of hydrogen,” J. Loss Prev. Process Ind. 20(2), 158–164 (2007).
[Crossref]

J. Phys. Chem. C (1)

L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, and N. S. Xu, “Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films,” J. Phys. Chem. C 114(36), 15504–15509 (2010).
[Crossref]

Opt. Eng. (1)

N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Physica E (1)

W. Zeng, Y. Li, B. Miao, and K. Pan, “Hydrothermal synthesis and gas sensing properties of WO3•H2O with different morphologies,” Physica E 56, 183–188 (2014).
[Crossref]

Proc. Combust. Inst. (1)

Y. R. Kim, H. J. Lee, S. Kim, and I. S. Jeung, “A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube,” Proc. Combust. Inst. 34(2), 2057–2064 (2013).
[Crossref]

Sens. Actuators B Chem. (9)

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate,” Sens. Actuators B Chem. 196(196), 604–609 (2014).
[Crossref]

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

J. Kukkola, M. Mohl, A. Leino, J. Mäklin, N. Halonen, A. Shchukarev, Z. Konya, H. Jantunen, and K. Kordas, “Room temperature hydrogen sensors based on metal decorated WO3 nanowires,” Sens. Actuators B Chem. 186(18), 90–95 (2013).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190(1), 657–663 (2014).
[Crossref]

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 206, 564–569 (2015).
[Crossref]

S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak,” Sens. Actuators B Chem. 93(1), 142–147 (2003).
[Crossref]

R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, and E. Llobet, “Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,” Sens. Actuators B Chem. 149(2), 352–361 (2010).
[Crossref]

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Solid State Sci. (1)

J. Li, Q. Zhao, G. Zhang, J. Chen, L. Zhong, L. Li, J. Huang, and Z. Ma, “Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template,” Solid State Sci. 12(8), 1393–1398 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of spiral microstructured FBG.

Fig. 2
Fig. 2

(a) Morphology of double spiral microstructure after depositing Pt-WO3 film. (b) The cross section diagram of Pt-WO3 film. (c) The SEM picture of nanostructure of Pt-WO3. (d) EDS pattern of Pt-WO3 film.

Fig. 3
Fig. 3

Hydrogen gas responding curves of four samples under different hydrogen concentrations. (a) Sample-1. (b) Sample-2. (c) Sample-3. (d) Standard FBG. (e) Compare the wavelength shift of different samples. (f) The amount of wavelength shift under different hydrogen concentrations for sample-1.

Fig. 4
Fig. 4

Typical one cycle response of the sensors under 1% H2 in air. (a) Sample-1. (b) Standard FBG. (c) Sample-2

Fig. 5
Fig. 5

Hydrogen response under different relative humidity (RH).

Fig. 6
Fig. 6

Hydrogen response after two months storage in air.

Tables (1)

Tables Icon

Table 1 All samples

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p = v w
W O 3 + 1 2 x H 2 P t H x W O 3
H x W O 3 + x 4 O 2 P t W O 3 + 1 2 x H 2 O
Δ λ B λ B = [ ζ + α + ( 1 p e ) × ( α f i l m α ) ] Δ T

Metrics