Abstract

Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards high-order modulation using complex modulation of semiconductor lasers

Di Che, Feng Yuan, and William Shieh
Opt. Express 24(6) 6644-6649 (2016)

Complex modulation and detection with directly modulated lasers

Qian Hu, Di Che, Yifei Wang, Feng Yuan, Qi Yang, and William Shieh
Opt. Express 23(25) 32809-32819 (2015)

Duobinary pulse shaping for frequency chirp enabled complex modulation

Di Che, Feng Yuan, Hamid Khodakarami, and William Shieh
Opt. Lett. 41(17) 3968-3971 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
    [Crossref]
  2. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
    [Crossref]
  3. R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
    [Crossref]
  4. B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
    [Crossref]
  5. W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-Class devices enabled by 65 GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.
    [Crossref]
  6. Y. Matsui, T. Pham, W. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communication Conference (2016), paper Th5B.4.
    [Crossref]
  7. Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
    [Crossref]
  8. I. N. Cano, A. Lerin, and J. Prat, “DQPSK directly phase modulated DFB for flexible coherent UDWDM-PONs,” IEEE Photonics Technol. Lett. 28(1), 35–38 (2016).
    [Crossref]
  9. D. Che, F. Yuan, Q. Hu, and W. Shieh, “Frequency chirp supported complex modulation of directly modulated lasers,” J. Lightwave Technol. 34(8), 1831–1836 (2016).
    [Crossref]
  10. D. Che, F. Yuan, and W. Shieh, “Towards high-order modulation using complex modulation of semiconductor lasers,” Opt. Express 24(6), 6644–6649 (2016).
    [Crossref] [PubMed]
  11. D. Che, F. Yuan, H. Khodakarami, and W. Shieh, “Duobinary pulse shaping for frequency chirp enabled complex modulation,” Opt. Lett. 41(17), 3968–3971 (2016).
    [Crossref] [PubMed]
  12. G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
    [Crossref]
  13. O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightwave Technol. 23(2), 749–763 (2005).
    [Crossref]
  14. D. Che, F. Yuan, and W. Shieh, “100-Gb/s complex direct modulation over 1600-km SSMF using probabilistic transition estimation,” in Optical Fiber Communication Conference (2017), paper M3C.5.
    [Crossref]
  15. C. Xie, S. Spiga, P. Dong, P. J. Winzer, A. Gnauck, C. Gréus, C. Neumeyr, M. Ortsiefer, M. Müller, and M. Amann, “Generation and transmission of 100-Gb/s PDM 4-PAM using directly modulated VCSELs and coherent detection,” in Optical Fiber Communication Conference (2014), paper Th5C.9.
    [Crossref]

2016 (4)

2006 (1)

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

2005 (1)

1992 (1)

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
[Crossref]

1990 (1)

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

1985 (1)

R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
[Crossref]

1982 (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
[Crossref]

1972 (1)

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

Agazzi, O. E.

Cano, I. N.

I. N. Cano, A. Lerin, and J. Prat, “DQPSK directly phase modulated DFB for flexible coherent UDWDM-PONs,” IEEE Photonics Technol. Lett. 28(1), 35–38 (2016).
[Crossref]

Carrer, H. S.

Che, D.

Crivelli, D. E.

Elrefaie, A. F.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

Fan, Z. F.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Forney, G. D.

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

Gimlett, J. L.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

Hakki, B. W.

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
[Crossref]

Hu, Q.

Hueda, M. R.

Iqbal, M. Z.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
[Crossref]

Khodakarami, H.

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
[Crossref]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
[Crossref]

Lerin, A.

I. N. Cano, A. Lerin, and J. Prat, “DQPSK directly phase modulated DFB for flexible coherent UDWDM-PONs,” IEEE Photonics Technol. Lett. 28(1), 35–38 (2016).
[Crossref]

Liao, C.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Mahgerefteh, D.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Matsui, Y.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

McCallion, K.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Prat, J.

I. N. Cano, A. Lerin, and J. Prat, “DQPSK directly phase modulated DFB for flexible coherent UDWDM-PONs,” IEEE Photonics Technol. Lett. 28(1), 35–38 (2016).
[Crossref]

Shieh, W.

Tayebati, P.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

Tsuji, S.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

Tucker, R. S.

R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
[Crossref]

Vodhanel, R. S.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

Wagner, R. E.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
[Crossref]

Yuan, F.

Zheng, X.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18(4), 582–595 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser,” IEEE Photonics Technol. Lett. 18(2), 385–387 (2006).
[Crossref]

I. N. Cano, A. Lerin, and J. Prat, “DQPSK directly phase modulated DFB for flexible coherent UDWDM-PONs,” IEEE Photonics Technol. Lett. 28(1), 35–38 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
[Crossref]

IEEE Trans. Inf. Theory (1)

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

J. Lightwave Technol. (4)

O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightwave Technol. 23(2), 749–763 (2005).
[Crossref]

D. Che, F. Yuan, Q. Hu, and W. Shieh, “Frequency chirp supported complex modulation of directly modulated lasers,” J. Lightwave Technol. 34(8), 1831–1836 (2016).
[Crossref]

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[Crossref]

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-Class devices enabled by 65 GSamples/s CMOS DAC core,” in Optical Fiber Communication Conference (2013), paper OM3H.1.
[Crossref]

Y. Matsui, T. Pham, W. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communication Conference (2016), paper Th5B.4.
[Crossref]

D. Che, F. Yuan, and W. Shieh, “100-Gb/s complex direct modulation over 1600-km SSMF using probabilistic transition estimation,” in Optical Fiber Communication Conference (2017), paper M3C.5.
[Crossref]

C. Xie, S. Spiga, P. Dong, P. J. Winzer, A. Gnauck, C. Gréus, C. Neumeyr, M. Ortsiefer, M. Müller, and M. Amann, “Generation and transmission of 100-Gb/s PDM 4-PAM using directly modulated VCSELs and coherent detection,” in Optical Fiber Communication Conference (2014), paper Th5C.9.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured probability density function for NRZ PAM-4 at OSNR of 32 dB (back-to-back measurement) (a) intensity; (b) differential phase.

Fig. 2
Fig. 2

OSNR sensitivity comparison between MLSE-TP and MLSE-TD (back-to-back measurement) (a) PAM-4; (b) PAM-8.

Fig. 3
Fig. 3

Measured probability density function for the duobinary PAM-4: (a) intensity; (b) differential phase; (c) OSNR sensitivity comparison between MLSE-TP and MLSE-TD. (Back-to-back measurement).

Fig. 4
Fig. 4

Experiment setup for the 25-Gbaud Nyquist-CDM PAM-4 system. Inset (left) optical spectra of the two lasers (“M” means modulation in the legend); (middle) transmitter DSP; (right) receiver DSP. DAC: digital-to-analog converter; DFB: distributed feedback laser; PBC: polarization beam combiner; SW: optical switch; OF: optical filter; ECL: external cavity laser; I/Q: in-phase/quadrature; x/y: X/Y polarization; TDS: time-domain oscilloscope.

Fig. 5
Fig. 5

Measured probability density function for Nyquist-pulse-shaped PAM-4.

Fig. 6
Fig. 6

100 Gb/s PAM-4 system. (a) Back-to-back OSNR sensitivity; (b) BER versus SSMF transmission distance. 7%-HD/20%-SD FEC threshold: 4e-3/2.4e-2; ‘Hard’ stands for intensity-only decision.

Tables (1)

Tables Icon

Table 1 Procedures for the statistical transition probability estimation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f= dφ(t) dt = lim t 1 t 2 φ( t 2 )φ( t 1 ) t 2 t 1
P( I t ,Δ φ t | S t , S t1 )=P( I t | S t )P(Δ φ t | S t , S t1 )
Δf= α 4π ( d dt lnI(t)+κI(t) )Δφ= α 2 ( ln I( t 2 ) I( t 1 ) + t 1 t 2 κI(t)dt )
Δφ= α 2 ( ln I( t 2 ) I( t 1 ) +κ I( t 1 )+I( t 2 ) 2 T )
D (n) =(1λ) D (n1) +λ d (n)
P( I t ,Δ φ t | S t , S t1 , S t2 )=P( I t | S t , S t1 )P(Δ φ t | S t , S t1 , S t2 )

Metrics