Abstract

We demonstrate unpolarized wideband reflectors fashioned with orthogonal serial resonant reflectors. Unpolarized incident light generates internal TM- and TE-polarized reflections that are made to cooperate to extend the bandwidth of the composite spectral reflectance. The experimental results presented show ~42% band extension by a two-grating module. In addition, good angular tolerance is found because the orthogonal arrangement simultaneously supports classical and fully conic mountings at oblique angles. The resulting spectra form contiguous zero-order reflectance across wide spectral/angular regions. Furthermore, using a multimodule device with serial reflectors fabricated with silicon-on-quartz wafers with different device layer thicknesses, extreme band extension is achieved providing ~56% fractional bandwidth with reflectance exceeding 98%. These results imply potential for developing lossless unpolarized mirrors operating in diverse spectral regions of practical interest.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Properties of wideband resonant reflectors under fully conical light incidence

Yeong Hwan Ko, Manoj Niraula, Kyu Jin Lee, and Robert Magnusson
Opt. Express 24(5) 4542-4551 (2016)

Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers

Mehrdad Shokooh-Saremi and Robert Magnusson
Opt. Express 16(22) 18249-18263 (2008)

Design and fabrication of broadband guided-mode resonant reflectors in TE polarization

Tanzina Khaleque, Mohammad Jalal Uddin, and Robert Magnusson
Opt. Express 22(10) 12349-12358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  2. T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
    [Crossref] [PubMed]
  3. D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express 19(10), 9050–9055 (2011).
    [Crossref] [PubMed]
  4. A. F. Turner and P. W. Baumeister, “Multilayer mirrors with high reflectance over an extended spectral region,” Appl. Opt. 5(1), 69–76 (1966).
    [Crossref] [PubMed]
  5. M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
    [Crossref]
  6. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [Crossref] [PubMed]
  7. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
    [Crossref] [PubMed]
  8. P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  9. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
    [Crossref] [PubMed]
  10. M. Shokooh-Saremi and R. Magnusson, “Properties of two-dimensional resonant reflectors with zero-contrast gratings,” Opt. Lett. 39(24), 6958–6961 (2014).
    [Crossref] [PubMed]
  11. Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7(5), 4900210 (2015).
    [Crossref]
  12. M. Niraula and R. Magnusson, “Unpolarized resonance grating reflectors with 44% fractional bandwidth,” Opt. Lett. 41(11), 2482–2485 (2016).
    [Crossref] [PubMed]
  13. R. Magnusson, M. Niraula, J. W. Yoon, Y. H. Ko, and K. J. Lee, Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705 (2016).
    [Crossref]
  14. M. G. Moharam, “Rigorous coupled-wave analysis of planar-grating diffraction,” Proc. SPIE 883, 8–11 (1988).
    [Crossref]
  15. Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
    [Crossref] [PubMed]
  16. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  17. Y. H. Ko, M. Niraula, K. J. Lee, and R. Magnusson, “Properties of wideband resonant reflectors under fully conical light incidence,” Opt. Express 24(5), 4542–4551 (2016).
    [Crossref]

2016 (3)

2015 (1)

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7(5), 4900210 (2015).
[Crossref]

2014 (3)

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
[Crossref] [PubMed]

M. Shokooh-Saremi and R. Magnusson, “Properties of two-dimensional resonant reflectors with zero-contrast gratings,” Opt. Lett. 39(24), 6958–6961 (2014).
[Crossref] [PubMed]

2012 (1)

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

2011 (1)

2008 (2)

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[Crossref] [PubMed]

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2005 (1)

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

2004 (1)

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1994 (1)

M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
[Crossref]

1988 (1)

M. G. Moharam, “Rigorous coupled-wave analysis of planar-grating diffraction,” Proc. SPIE 883, 8–11 (1988).
[Crossref]

1966 (1)

Alleyne, A. G.

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Baumeister, P. W.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Dapkus, P. D.

M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
[Crossref]

Fan, S.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[Crossref] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Hsia, K. J.

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Huang, Y. Y.

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Jordan, T. M.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Kilic, O.

Kim, S.

Ko, Y. H.

Y. H. Ko, M. Niraula, K. J. Lee, and R. Magnusson, “Properties of wideband resonant reflectors under fully conical light incidence,” Opt. Express 24(5), 4542–4551 (2016).
[Crossref]

R. Magnusson, M. Niraula, J. W. Yoon, Y. H. Ko, and K. J. Lee, Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705 (2016).
[Crossref]

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7(5), 4900210 (2015).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Lee, K. J.

R. Magnusson, M. Niraula, J. W. Yoon, Y. H. Ko, and K. J. Lee, Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705 (2016).
[Crossref]

Y. H. Ko, M. Niraula, K. J. Lee, and R. Magnusson, “Properties of wideband resonant reflectors under fully conical light incidence,” Opt. Express 24(5), 4542–4551 (2016).
[Crossref]

Lousse, V.

Ma, Z.

MacDougal, M. H.

M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
[Crossref]

Magnusson, R.

Menard, E.

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Moharam, M. G.

M. G. Moharam, “Rigorous coupled-wave analysis of planar-grating diffraction,” Proc. SPIE 883, 8–11 (1988).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Niraula, M.

Park, J.-U.

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Partridge, J. C.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Roberts, N. W.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Rogers, J. A.

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Shokooh-Saremi, M.

Slovick, B. A.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Solgaard, O.

Steier, W. H.

M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
[Crossref]

Suh, W.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Turner, A. F.

Valentine, J.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Yang, H.

Yoon, J. W.

R. Magnusson, M. Niraula, J. W. Yoon, Y. H. Ko, and K. J. Lee, Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705 (2016).
[Crossref]

Yu, Z. G.

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Zhao, D.

Zhao, H.

M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
[Crossref]

Zhou, W.

D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express 19(10), 9050–9055 (2011).
[Crossref] [PubMed]

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Ziari, M.

M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Moitra, B. A. Slovick, Z. G. Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Electron. Lett. (1)

M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett. 30(14), 1147–1149 (1994).
[Crossref]

IEEE Photonics J. (1)

Y. H. Ko, M. Shokooh-Saremi, and R. Magnusson, “Modal processes in two-dimensional resonant reflectors and their correlation with spectra of one-dimensional equivalents,” IEEE Photonics J. 7(5), 4900210 (2015).
[Crossref]

Langmuir (1)

Y. Y. Huang, W. Zhou, K. J. Hsia, E. Menard, J.-U. Park, J. A. Rogers, and A. G. Alleyne, “Stamp collapse in soft lithography,” Langmuir 21(17), 8058–8068 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (2)

R. Magnusson, M. Niraula, J. W. Yoon, Y. H. Ko, and K. J. Lee, Guided-mode resonance nanophotonics in materially sparse architectures,” Proc. SPIE 9757, 975705 (2016).
[Crossref]

M. G. Moharam, “Rigorous coupled-wave analysis of planar-grating diffraction,” Proc. SPIE 883, 8–11 (1988).
[Crossref]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of serial 1D gratings where the parameters include the period (Λ), fill factor (F), grating depth (dg), and thickness of the homogeneous sublayer (dh). (b) Illustration of the external reflection processes in under TM (left) and TE (right) polarization.

Fig. 2
Fig. 2

Computed spectra pertinent to a two-grating module. The parameters are Λ = 640 nm, F = 0.55, dh = 170 nm, and dg = 350 nm. For comparison, the R0 spectra are calculated by RCWA. Here, d is the air gap distance between the two gratings as depicted in the inset. It is seen that the value of d does not significantly affect the spectrum at the high reflection band.

Fig. 3
Fig. 3

Numerical R0 spectra for a two-grating module with dg = (a) 420, (b) 410, (c) 400, and (d) 390 nm where the grating parameters are Λ = 640 nm, F = 0.55, and dg + dh = 520 nm. The black curves represent the approximation in Eq. (2) for unpolarized input light. The gray dense curve in (d) is the rigorously calculated R0 spectrum for the serial reflector.

Fig. 4
Fig. 4

(a) Schematic illustration indicating packing of serial 1D gratings to form a module and (b) photographs of a mounted module.

Fig. 5
Fig. 5

(a) SEM top and cross-sectional views of the Si grating on a quartz substrate. (b) Calculated and (c) measured R0 spectra of single (TE and TM polarized) and serial reflectors (unpolarized).

Fig. 6
Fig. 6

(a) Simultaneous incidence in classical and fully conic mountings and (b) a measured color-coded R0 map as a function of the angle of incidence (θ) under unpolarized light illumination for the device in Fig. 5.

Fig. 7
Fig. 7

Measured R0 maps of a single 1D resonant reflector under (a) TM at classical incidence, (b) TM at fully conic incidence, (c) TE at classical and (d) fully conic mounting.

Fig. 8
Fig. 8

Unpolarized spectra of a multimodule reflector prototype under normal incidence. (a) Spectrum of a component SOQ-900 module. (b) Embodiment and modeling of the multimodule device. (c) Spectra pertaining to the multimodule reflector.

Fig. 9
Fig. 9

(a) Calculated the Rtotal spectrum considering two different RTM and RTE spectra where these polarized reflectances are numerically expressed by a 3rd order Gaussian function. The parameters are λTM = 1500 nm, λTE = 1600 nm, σTM = 80 nm, and σTE = 20 nm. To show a separation between the bands, we select a 100-nm difference of the center wavelengths (λTE - λTE). (b) A color map of the calculated Rtotal as function of the separation between the polarized reflectance bands.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R total = 1 2 { R TM + R TE +[ R TE ( 1 R TM ) 2 + R TM ( 1 R TE ) 2 ] n=0 ( R TM R TE ) n }
= 1 2 { R TM + R TE + R TE ( 1 R TM ) 2 + R TM ( 1 R TE ) 2 1 R TM R TE },
R tot ={ R 1 + R 2 ( 1 R 1 ) 2 / 1 R 1 R 2 }
R TM ( λ )=exp ( ( ( λ λ TM ) 2 2 σ TM 2 ) 3 ) an d R TE ( λ )=exp( ( ( λ λ TE ) 2 2 σ TE 2 ) 3 )

Metrics