Abstract

In this paper, a simple heuristic power allocation scheme is proposed for a random LED array to obtain uniform irradiance on the projection surface. This is done by considering a binomial point process (BPP) for modeling the LED location and using the quality factor as a performance metric. Numerical results are provided to validate the proposed model and demonstrate its simplicity over existing LED geometries.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Smart LED allocation scheme for efficient multiuser visible light communication networks

Atul Sewaiwar, Samrat Vikramaditya Tiwari, and Yeon Ho Chung
Opt. Express 23(10) 13015-13024 (2015)

Optimization of multi-element LED source for uniform illumination of plane surface

Deepa Ramane and Arvind Shaligram
Opt. Express 19(S4) A639-A648 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
    [Crossref]
  2. J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A (2008).
    [Crossref]
  3. J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  5. I. Moreno, “Configuration of led arrays for uniform illumination,” Proc. SPIE 5622, 713–718 (2004).
    [Crossref]
  6. I. Moreno, “Design of led spherical lamps for uniform far-field illumination,” Proc. SPIE 6046, 60462E (2006).
    [Crossref]
  7. N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46 (1994).
    [Crossref]
  8. M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (2005).
    [Crossref]
  9. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265–2272 (2006).
    [Crossref] [PubMed]
  10. Z. Qin, K. Wang, F. Chen, X. Luo, and S. Liu, “Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle,” Opt. Express 18(16), 17460–17476 (2010).
    [Crossref] [PubMed]
  11. A. J. W. Whang, Y. Y. Chen, and Y. T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Display Technol. 5(3), 94–103 (2009).
    [Crossref]
  12. K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4), A830–A840 (2011).
    [Crossref] [PubMed]
  13. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).
  14. Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmission with the white colored LED for the wireless home link,” Int. Symposium on Personal, Indoor and Mobile Radio Communications (2000), pp. 1325–1329.
    [Crossref]
  15. T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination,” in International Symposium on Microwave and Optical Technology (2001), pp 45–48.
  16. H.-C. Chen, C.-J. Liou, and S.-R. Siao, “Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits,” Opt. Eng. 54(11), 115106 (2015).
    [Crossref]
  17. T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
    [Crossref]
  18. Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref] [PubMed]
  19. J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
    [Crossref]
  20. Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).
  21. H. Zheng, J. Chen, C. Yu, and M. Gurusamy, “Inverse design of led arrangement for visible light communication systems,” Opt. Commun. 382, 615–623 (2017).
    [Crossref]
  22. S. Pal, “Optimization of LED array for uniform illumination over a target plane by evolutionary programming,” Appl. Opt. 54(27), 8221–8227 (2015).
    [Crossref] [PubMed]
  23. P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Publ. 9, 14014 (2014).
    [Crossref]
  24. S. Srinivasa and M. Haenggi, “Distance distributions in finite uniformly random networks: theory and applications,” IEEE Trans. Veh. Technol. 59(2), 940–949 (2010).
    [Crossref]
  25. Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in International Symposium on Communication Systems, Networks and Digital Signal Processing (2016), pp. 564–570.
  26. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, ‘Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

2017 (1)

H. Zheng, J. Chen, C. Yu, and M. Gurusamy, “Inverse design of led arrangement for visible light communication systems,” Opt. Commun. 382, 615–623 (2017).
[Crossref]

2015 (3)

S. Pal, “Optimization of LED array for uniform illumination over a target plane by evolutionary programming,” Appl. Opt. 54(27), 8221–8227 (2015).
[Crossref] [PubMed]

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

H.-C. Chen, C.-J. Liou, and S.-R. Siao, “Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits,” Opt. Eng. 54(11), 115106 (2015).
[Crossref]

2014 (1)

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Publ. 9, 14014 (2014).
[Crossref]

2012 (2)

Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
[Crossref] [PubMed]

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

2011 (1)

2010 (2)

Z. Qin, K. Wang, F. Chen, X. Luo, and S. Liu, “Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle,” Opt. Express 18(16), 17460–17476 (2010).
[Crossref] [PubMed]

S. Srinivasa and M. Haenggi, “Distance distributions in finite uniformly random networks: theory and applications,” IEEE Trans. Veh. Technol. 59(2), 940–949 (2010).
[Crossref]

2009 (1)

2008 (1)

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A (2008).
[Crossref]

2007 (1)

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

2006 (2)

2005 (1)

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (2005).
[Crossref]

2004 (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

I. Moreno, “Configuration of led arrays for uniform illumination,” Proc. SPIE 5622, 713–718 (2004).
[Crossref]

2003 (2)

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

1997 (1)

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

1994 (1)

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46 (1994).
[Crossref]

Avendaño-Alejo, M.

Barry, J.

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Chang-ying, C.

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Chen, F.

Chen, H.-C.

H.-C. Chen, C.-J. Liou, and S.-R. Siao, “Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits,” Opt. Eng. 54(11), 115106 (2015).
[Crossref]

Chen, J.

Chen, W.

Chen, Y.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in International Symposium on Communication Systems, Networks and Digital Signal Processing (2016), pp. 564–570.

Chen, Y. Y.

Ding, J.

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, ‘Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

Gennert, M. A.

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (2005).
[Crossref]

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46 (1994).
[Crossref]

Guo-yong, H.

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Gurusamy, M.

H. Zheng, J. Chen, C. Yu, and M. Gurusamy, “Inverse design of led arrangement for visible light communication systems,” Opt. Commun. 382, 615–623 (2017).
[Crossref]

Haenggi, M.

S. Srinivasa and M. Haenggi, “Distance distributions in finite uniformly random networks: theory and applications,” IEEE Trans. Veh. Technol. 59(2), 940–949 (2010).
[Crossref]

Haruyama, S.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmission with the white colored LED for the wireless home link,” Int. Symposium on Personal, Indoor and Mobile Radio Communications (2000), pp. 1325–1329.
[Crossref]

T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination,” in International Symposium on Microwave and Optical Technology (2001), pp 45–48.

Ho, S.-W.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in International Symposium on Communication Systems, Networks and Digital Signal Processing (2016), pp. 564–570.

Huang, Z.

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

Jakabovic, J.

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A (2008).
[Crossref]

Ji, Y.

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

Kahn, J.

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination,” in International Symposium on Microwave and Optical Technology (2001), pp 45–48.

Kovác, J.

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A (2008).
[Crossref]

Kytka, M.

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A (2008).
[Crossref]

Leatherman, G. L.

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (2005).
[Crossref]

Lei, P.

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Publ. 9, 14014 (2014).
[Crossref]

Liou, C.-J.

H.-C. Chen, C.-J. Liou, and S.-R. Siao, “Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits,” Opt. Eng. 54(11), 115106 (2015).
[Crossref]

Liu, S.

Liu, Y.

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Long, K.

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Luo, X.

Moreno, I.

I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265–2272 (2006).
[Crossref] [PubMed]

I. Moreno, “Design of led spherical lamps for uniform far-field illumination,” Proc. SPIE 6046, 60462E (2006).
[Crossref]

I. Moreno, “Configuration of led arrays for uniform illumination,” Proc. SPIE 5622, 713–718 (2004).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmission with the white colored LED for the wireless home link,” Int. Symposium on Personal, Indoor and Mobile Radio Communications (2000), pp. 1325–1329.
[Crossref]

T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination,” in International Symposium on Microwave and Optical Technology (2001), pp 45–48.

Pal, S.

Peng, Y.

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, ‘Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

Qin, Z.

Siao, S.-R.

H.-C. Chen, C.-J. Liou, and S.-R. Siao, “Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits,” Opt. Eng. 54(11), 115106 (2015).
[Crossref]

Srinivasa, S.

S. Srinivasa and M. Haenggi, “Distance distributions in finite uniformly random networks: theory and applications,” IEEE Trans. Veh. Technol. 59(2), 940–949 (2010).
[Crossref]

Sung, C. W.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in International Symposium on Communication Systems, Networks and Digital Signal Processing (2016), pp. 564–570.

Tanaka, Y.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination,” in International Symposium on Microwave and Optical Technology (2001), pp 45–48.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmission with the white colored LED for the wireless home link,” Int. Symposium on Personal, Indoor and Mobile Radio Communications (2000), pp. 1325–1329.
[Crossref]

Teng, Y. T.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, ‘Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

Tzonchev, R. I.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, ‘Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

Wang, K.

Wang, Q.

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Publ. 9, 14014 (2014).
[Crossref]

Wang, Z.

Whang, A. J. W.

Wittels, N.

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (2005).
[Crossref]

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46 (1994).
[Crossref]

Wong, W. S.

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in International Symposium on Communication Systems, Networks and Digital Signal Processing (2016), pp. 564–570.

Wu, D.

Yu, C.

Zheng, H.

H. Zheng, J. Chen, C. Yu, and M. Gurusamy, “Inverse design of led arrangement for visible light communication systems,” Opt. Commun. 382, 615–623 (2017).
[Crossref]

Zhen-qiang, C.

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Zhong, W.-D.

Zou, H.

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Publ. 9, 14014 (2014).
[Crossref]

Appl. Opt. (2)

IEEE Commun. Lett. (1)

J. Ding, Z. Huang, and Y. Ji, “Evolutionary algorithm based power coverage optimization for visible light communications,” IEEE Commun. Lett. 16(4), 439–441 (2012).
[Crossref]

IEEE Trans. Consum. Electron. (2)

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Veh. Technol. (1)

S. Srinivasa and M. Haenggi, “Distance distributions in finite uniformly random networks: theory and applications,” IEEE Trans. Veh. Technol. 59(2), 940–949 (2010).
[Crossref]

IEICE Trans. Commun. (1)

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

J. Display Technol. (1)

J. Europ. Opt. Soc. Rap. Publ. (1)

P. Lei, Q. Wang, and H. Zou, “Designing LED array for uniform illumination based on local search algorithm,” J. Europ. Opt. Soc. Rap. Publ. 9, 14014 (2014).
[Crossref]

J. Zhejiang Univ. Sci. A (1)

H. Guo-yong, C. Chang-ying, and C. Zhen-qiang, “Free-space optical communication using visible light,” J. Zhejiang Univ. Sci. A 8(2), 186–191 (2007).
[Crossref]

Opt. Commun. (1)

H. Zheng, J. Chen, C. Yu, and M. Gurusamy, “Inverse design of led arrangement for visible light communication systems,” Opt. Commun. 382, 615–623 (2017).
[Crossref]

Opt. Eng. (2)

H.-C. Chen, C.-J. Liou, and S.-R. Siao, “Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits,” Opt. Eng. 54(11), 115106 (2015).
[Crossref]

M. A. Gennert, N. Wittels, and G. L. Leatherman, “Uniform frontal illumination of planar surfaces: where to place the lamps,” Opt. Eng. 32(6), 1261–1271 (2005).
[Crossref]

Opt. Express (3)

Proc. IEEE (1)

J. Kahn and J. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Proc. SPIE (5)

J. Kovác, J. Jakabovic, and M. Kytka, “Advanced light emitting devices for optoelectronic applications,” Proc. SPIE 7138, 71382A (2008).
[Crossref]

I. Moreno, “Configuration of led arrays for uniform illumination,” Proc. SPIE 5622, 713–718 (2004).
[Crossref]

I. Moreno, “Design of led spherical lamps for uniform far-field illumination,” Proc. SPIE 6046, 60462E (2006).
[Crossref]

N. Wittels and M. A. Gennert, “Optimal lighting design to maximize illumination uniformity,” Proc. SPIE 2348, 46 (1994).
[Crossref]

Y. Liu, Y. Peng, Y. Liu, and K. Long, “Optimization of receiving power distribution using genetic algorithm for visible light communication,” Proc. SPIE 9679, 96790I (2015).

Other (4)

Y. Chen, C. W. Sung, S.-W. Ho, and W. S. Wong, “Ber analysis for interfering visible light communication systems,” in International Symposium on Communication Systems, Networks and Digital Signal Processing (2016), pp. 564–570.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, ‘Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmission with the white colored LED for the wireless home link,” Int. Symposium on Personal, Indoor and Mobile Radio Communications (2000), pp. 1325–1329.
[Crossref]

T. Komine, Y. Tanaka, S. Haruyama, and M. Nakagawa, “Basic study on visible-light communication using light emitting diode illumination,” in International Symposium on Microwave and Optical Technology (2001), pp 45–48.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System model.

Fig. 2
Fig. 2

Arrangement of LEDs for different geometries.

Fig. 3
Fig. 3

SNR distribution with equal power allocation.

Fig. 4
Fig. 4

SNR distribution for circle-square geometry.

Fig. 5
Fig. 5

FΛ(α) has a maximum.

Fig. 6
Fig. 6

Golden section search algorithm.

Fig. 7
Fig. 7

Average SNR for a BPP. N = 16.

Fig. 8
Fig. 8

SNR for two different realizations for N = 64. Uniform irradiance possible with different realizations.

Tables (4)

Tables Icon

Table 1 System Model Parameters

Tables Icon

Table 2 Sample Noise Parameters

Tables Icon

Table 3 Simulation Parameters

Tables Icon

Table 4 SNR Performance

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R ( ϕ ) = ( m + 1 ) cos m ( ϕ ) 2 π ,
H = R ( ϕ ) cos ( θ ) A d 2 = ( m + 1 ) cos m ( ϕ ) A cos ( θ ) 2 π d 2
y j = R P r j + n j ,
P r j = i = 1 N H i j P t i ,
H i j = ( m + 1 ) A h m + 1 2 π d i j m + 3
p U ( u ) = { 1 l l 2 u l 2 0 otherwise
σ j 2 = σ shot 2 + σ thermal 2 ,
σ shot 2 = 2 q R P r j B N + 2 q I b g I 2 B N , σ thermal 2 = 8 π k T k G η A I 2 B N 2 + 16 π 2 k T k Γ g m η 2 A 2 I 3 B N 3
F Λ = Λ ¯ 2 var ( Λ ) ,
Λ j = P r j σ j 2
P t i = r i α i = 1 N r i α P ,
Λ j = 𝔼 Φ [ P r j σ j 2 ]
max α F Λ ( α ) ,

Metrics