Abstract

Ti4+-diffused Zr4+/Er3+-codoped LiNbO3 strip waveguide was fabricated on an X-cut LiNbO3 substrate by thermal diffusion in sequence of Er3+, Zr4+ and Ti4+. Secondary ion mass spectrometry study shows that the Ti4+ ions follow a sum of two error functions in the width direction and a Gauss function in the depth direction of the waveguide. Both Er3+ and Zr4+ profiles follow the desired Gauss function, and entirely cover the Ti4+ profile. Optical study shows that the waveguide is TE or TM single mode at 1.5 μm wavelength, and has a loss of 0.3 (0.5) dB/cm for the TM (TE) mode. In the case of 980 nm pumping, the waveguide shows stable 1547 nm signal output under high-power pumping without optical damage observed, and a net gain of 1.1 dB/cm is obtained for the available pump power of 120 mW.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics

De-Long Zhang, Jian Kang, Qun Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun
Opt. Mater. Express 5(8) 1715-1721 (2015)

Near-stoichiometric Ti:Sc:LiNbO3 strip waveguide for integrated optics

Xiao-Fei Yang, Zi-Bo Zhang, Wan-Ying Du, Qun Zhang, Wing-Han Wong, Dao-Yin Yu, Edwin Yue-Bun Pun, and De-Long Zhang
Opt. Mater. Express 6(8) 2637-2643 (2016)

Zr4+ diffusion-doping effect on refractive index of LiNbO3: A comparison with bulk-doping case

De-Long Zhang, Qun Zhang, Cong-Xian Qiu, Wing-Han Wong, and Edwin Yue-Bun Pun
Opt. Mater. Express 4(10) 2215-2220 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  2. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO(3):Zn crystal,” Opt. Lett. 15(18), 996–998 (1990).
    [Crossref] [PubMed]
  3. J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
    [Crossref]
  4. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
    [Crossref]
  5. K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
    [Crossref]
  6. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
    [Crossref]
  7. Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
    [Crossref]
  8. L. Wang, S. Liu, Y. Kong, S. Chen, Z. Huang, L. Wu, R. Rupp, and J. Xu, “Increased optical-damage resistance in tin-doped lithium niobate,” Opt. Lett. 35(6), 883–885 (2010).
    [Crossref] [PubMed]
  9. D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
    [Crossref]
  10. D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
    [Crossref] [PubMed]
  11. D. L. Zhang, J. Kang, Q. Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics,” Opt. Mater. Express 5(8), 1715–1721 (2015).
    [Crossref]
  12. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
    [Crossref]
  13. Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
    [Crossref]
  14. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
    [Crossref]
  15. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
    [Crossref] [PubMed]
  16. M. A. Rebolledo, J. A. Vallés, and S. Setién, “In situ measurement of polarization-resolved emission and absorption cross sections of Er-doped Ti:LiNbO3 waveguides,” J. Opt. Soc. Am. B 19(7), 1516–1520 (2002).
    [Crossref]
  17. H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
    [Crossref]
  18. J. A. Muňoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Status Solidi 168(2), 525–530 (1998).
    [Crossref]
  19. D. L. Zhang, P. R. Hua, and E. Y. B. Pun, “Correct determination of internal gain and net gain in Er-doped optical waveguide amplifier from pump-on/off measurement,” Opt. Commun. 279(1), 64–67 (2007).
    [Crossref]
  20. G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
    [Crossref]
  21. J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69(25), 3785–3787 (1996).
    [Crossref]
  22. C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
    [Crossref]

2015 (2)

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

D. L. Zhang, J. Kang, Q. Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics,” Opt. Mater. Express 5(8), 1715–1721 (2015).
[Crossref]

2013 (1)

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

2012 (1)

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

2010 (1)

2007 (2)

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

D. L. Zhang, P. R. Hua, and E. Y. B. Pun, “Correct determination of internal gain and net gain in Er-doped optical waveguide amplifier from pump-on/off measurement,” Opt. Commun. 279(1), 64–67 (2007).
[Crossref]

2005 (1)

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

2002 (1)

2001 (1)

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

1998 (3)

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

J. A. Muňoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Status Solidi 168(2), 525–530 (1998).
[Crossref]

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

1997 (1)

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

1996 (3)

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69(25), 3785–3787 (1996).
[Crossref]

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

1993 (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

1992 (1)

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

1990 (1)

1988 (1)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Amin, J.

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69(25), 3785–3787 (1996).
[Crossref]

Aust, J. A.

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69(25), 3785–3787 (1996).
[Crossref]

Balsamo, S.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

Baumann, I.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Bava, G. P.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Beckers, L.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Betzler, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Brinkmann, R.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Buchal, C.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Chen, S.

Chen, S. L.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Cristiani, I.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Cussó, F.

J. A. Muňoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Status Solidi 168(2), 525–530 (1998).
[Crossref]

de Sandro, J. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Degiorgio, V.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Dinand, M.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Du, W. J.

Fleuster, M.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Furukawa, Y.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Gather, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Gog, Th.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Grundkotter, W.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Han, F.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

Hempstead, M.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Herreros, B.

J. A. Muňoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Status Solidi 168(2), 525–530 (1998).
[Crossref]

Hofmann, D.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Holzbrecher, H.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Hua, P. R.

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

D. L. Zhang, P. R. Hua, and E. Y. B. Pun, “Correct determination of internal gain and net gain in Er-doped optical waveguide amplifier from pump-on/off measurement,” Opt. Commun. 279(1), 64–67 (2007).
[Crossref]

Huang, C. H.

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

Huang, Z.

Iyi, N.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Jones, J. K.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Kang, J.

Kasemir, K.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Kimura, S.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Kitamura, K.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Kokanyan, E. P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Kong, Y.

Kong, Y. F.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Lee, Y. L.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Lifante, G.

J. A. Muňoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Status Solidi 168(2), 525–530 (1998).
[Crossref]

Liu, H. D.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Liu, S.

Liu, S. G.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Materlik, G.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Matzas, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

McCaughan, L.

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

Minzioni, P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Montrosset, I.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Muller, K.-H.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Munoz, J. A.

J. A. Muňoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Status Solidi 168(2), 525–530 (1998).
[Crossref]

Oesselke, T.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

Pandavenes, J.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

Paulus, H.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Pryalkin, V. I.

Pun, E. Y. B.

D. L. Zhang, J. Kang, Q. Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics,” Opt. Mater. Express 5(8), 1715–1721 (2015).
[Crossref]

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

D. L. Zhang, P. R. Hua, and E. Y. B. Pun, “Correct determination of internal gain and net gain in Er-doped optical waveguide amplifier from pump-on/off measurement,” Opt. Commun. 279(1), 64–67 (2007).
[Crossref]

Qiu, C. X.

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Quiring, V.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Rebolledo, M. A.

Ricken, R.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

Rochhausen, K.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

Rubinina, N.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Rubinina, N. M.

Rupp, R.

Sanford, N. A.

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69(25), 3785–3787 (1996).
[Crossref]

Sato, M.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Schreiber, G.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Setién, S.

Shepherd, D. P.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Sohler, W.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Stolz, H.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Strake, E.

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

Suche, H.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

Tiegel, B.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Tropper, A. C.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Vallés, J. A.

Volk, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Volk, T. R.

von der Osten, W.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Wahlbrink, T.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Wang, J.

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Wang, L.

Wang, Z.

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

Witte, O.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Wöhlecke, M.

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

Wong, K. K.

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

Wong, W. H.

D. L. Zhang, J. Kang, Q. Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics,” Opt. Mater. Express 5(8), 1715–1721 (2015).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

Wu, L.

Xu, J.

Xu, J. J.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Yamamoto, J. K.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

Yu, D. Y.

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

Yue-Bun Pun, E.

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

Zhang, D. L.

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

D. L. Zhang, J. Kang, Q. Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics,” Opt. Mater. Express 5(8), 1715–1721 (2015).
[Crossref]

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

D. L. Zhang, P. R. Hua, and E. Y. B. Pun, “Correct determination of internal gain and net gain in Er-doped optical waveguide amplifier from pump-on/off measurement,” Opt. Commun. 279(1), 64–67 (2007).
[Crossref]

Zhang, Q.

D. L. Zhang, J. Kang, Q. Zhang, W. J. Du, W. H. Wong, and E. Y. B. Pun, “Zirconium-diffusion-doped Ti:LiNbO3 strip waveguide for integrated optics,” Opt. Mater. Express 5(8), 1715–1721 (2015).
[Crossref]

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

Zhang, W. Z.

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Zhao, Y. J.

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

Appl. Phys. Lett. (5)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, and M. Sato, “Increased optical damage resistance in Sc2O3-doped LiNbO3,” Appl. Phys. Lett. 61(18), 2156–2158 (1992).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Y. F. Kong, S. G. Liu, Y. J. Zhao, H. D. Liu, S. L. Chen, and J. J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91(8), 081908 (2007).
[Crossref]

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69(25), 3785–3787 (1996).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, L. Beckers, C. Buchal, M. Fleuster, H. Holzbrecher, H. Paulus, K.-H. Muller, Th. Gog, G. Materlik, O. Witte, H. Stolz, and W. von der Osten, “Erbium incorporation in LiNbO3 by diffusion-doping,” Appl. Phys., A Mater. Sci. Process. 64(1), 33–44 (1996).
[Crossref]

Electron. Lett. (2)

H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset, and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett. 34(12), 1228–1230 (1998).
[Crossref]

C. H. Huang and L. McCaughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33(19), 1639–1640 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti: LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

J. Am. Ceram. Soc. (2)

D. L. Zhang, C. X. Qiu, W. Z. Zhang, P. R. Hua, D. Y. Yu, and E. Y. B. Pun, “Diffusion characteristics of Zr4+ in LiNbO3 single-crystal,” J. Am. Ceram. Soc. 96(9), 2722–2724 (2013).
[Crossref]

Z. Wang, P. R. Hua, F. Han, D. Y. Yu, E. Y. B. Pun, and D. L. Zhang, “Contribution of diffused Er3+ ions to refractive index of LiNbO3 crystal and relation of Li out-diffusion to Er3+-diffusion condition,” J. Am. Ceram. Soc. 95(6), 1993–1997 (2012).
[Crossref]

J. Appl. Phys. (1)

K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wöhlecke, B. Gather, N. Rubinina, and T. Volk, “Influence of Zn/In codoping on the optical properties of lithium niobate,” J. Appl. Phys. 84(9), 5191–5193 (1998).
[Crossref]

J. Lightwave Technol. (1)

E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6(6), 1126–1135 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. L. Zhang, P. R. Hua, and E. Y. B. Pun, “Correct determination of internal gain and net gain in Er-doped optical waveguide amplifier from pump-on/off measurement,” Opt. Commun. 279(1), 64–67 (2007).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: A generalized fit,” Phys. Rev. B Condens. Matter 48(21), 15613–15620 (1993).
[Crossref] [PubMed]

Phys. Status Solidi (1)

J. A. Muňoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Status Solidi 168(2), 525–530 (1998).
[Crossref]

Proc. SPIE (1)

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Sci. Rep. (1)

D. L. Zhang, Q. Zhang, C. X. Qiu, W. H. Wong, D. Y. Yu, and E. Yue-Bun Pun, “Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals,” Sci. Rep. 5(1), 10018 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Image of Ti:Zr:Er:LN strip waveguide. (b) Near-field patterns of TM and TE modes at 1.5 μm. (c) The waveguide and substrate emit green fluorescence under 980 nm excitation.

Fig. 2
Fig. 2

(a) Surface Ti4+ profile, (b) depth profiles of Nb, O, Er, Zr and Ti.

Fig. 3
Fig. 3

(a) ASE spectrum of Ti:Zr:Er:LN strip waveguide pumped at 980 and 1480 nm. Inset shows the measured and fitted decay of the 1.5 μm fluorescence under the 980 nm excitation. (b). Pump power dependence of net gain of Ti:Er:LN and Ti:Zr:Er:LN strip waveguides.