Abstract

Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm−1 Hz−1/2 sensitivity is achieved and is found to be photon shot noise limited.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency

Jianming Zhao, Xingbo Zhu, Linjie Zhang, Zhigang Feng, Changyong Li, and Suotang Jia
Opt. Express 17(18) 15821-15826 (2009)

Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation

Edward A. Whittaker, Chi Man Shum, Haim Grebel, and Haim Lotem
J. Opt. Soc. Am. B 5(6) 1253-1256 (1988)

Versatile, high-power 460 nm laser system for Rydberg excitation of ultracold potassium

Alda Arias, Stephan Helmrich, Christoph Schweiger, Lynton Ardizzone, Graham Lochead, and Shannon Whitlock
Opt. Express 25(13) 14829-14839 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
    [Crossref]
  2. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
    [Crossref]
  3. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
    [Crossref] [PubMed]
  4. D. Weiss, B. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70, 2706–2709 (1993).
    [Crossref] [PubMed]
  5. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” arXiv:1611.02427v1 (2016).
  6. J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
    [Crossref]
  7. H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
    [Crossref]
  8. P. Böhi and P. Treutlein, “Simple microwave field imaging technique using hot atomic vapor cells,” Appl. Phys. Lett. 101, 181107 (2012).
    [Crossref]
  9. V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
    [Crossref] [PubMed]
  10. C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
    [Crossref]
  11. J. P. Booth, M. Fadlallah, J. Derouard, and N. Sadeghi, “Electric field measurements in discharges by 2+1 photon laser Stark spectroscopy of atomic hydrogen,” Appl. Phys. Lett. 65, 819–821 (1994).
    [Crossref]
  12. T. Crowley, E. Donley, and T. Heavner, “Quantum-based microwave power measurements: Proof-of-concept experiment,” Rev. Sci. Instrum. 75, 2575–2580 (2004).
    [Crossref]
  13. D. Paulusse, N. Rowell, and A. Michaud, “Accuracy of an atomic microwave power standard,” IEEE Trans. Instrum. Meas. 54, 692–695 (2005).
    [Crossref]
  14. I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
    [Crossref] [PubMed]
  15. J. M. Obrecht, R. J. Wild, and E. A. Cornell, “Measuring electric fields from surface contaminants with neutral atoms,” Phys. Rev. A 75, 062903 (2007).
    [Crossref]
  16. A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [Crossref] [PubMed]
  17. A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
    [Crossref]
  18. P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein, “Imaging of microwave fields using ultracold atoms,” Appl. Phys. Lett. 97, 051101 (2010).
    [Crossref]
  19. M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, “Polarized alkali-metal vapor with minute-long transverse spin-relaxation time,” Phys. Rev. Lett. 105, 070801 (2010).
    [Crossref] [PubMed]
  20. F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
    [Crossref]
  21. J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
    [Crossref]
  22. J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
    [Crossref]
  23. A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
    [Crossref] [PubMed]
  24. D. Pozar, Microwave and RF Design of Wireless Systems (Wiley, 2001).
  25. S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).
  26. E. Thostenson and T.-W. Chou, “Microwave processing: fundamentals and applications,” Composites Part A: Appl. Sci. Manuf. 30, 1055–1071 (1999).
    [Crossref]
  27. A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theory Tech. 50, 963–974 (2002).
    [Crossref]
  28. H. Fan, S. Kumar, H. Kübler, and J. P. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
    [Crossref]
  29. H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
    [Crossref]
  30. R. Löw and T. Pfau, “Magneto-optics: hot atoms rotate light rapidly,” Nat. Photonics 3, 197–199 (2009).
    [Crossref]
  31. B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
    [Crossref]
  32. D. P.-Barato and C. S. Adams, “All-optical quantum information processing using Rydberg gates,” Phys. Rev. Lett. 112, 040501 (2014).
    [Crossref]
  33. A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
    [Crossref] [PubMed]
  34. H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
    [Crossref]
  35. V. Tishchenko, V. Tokatly, and V. Luk’yanov, “The beginning of the metrology of radio-frequency electromagnetic fields and the first standards of electric field strength,” Meas. Tech. 46, 76–84 (2003).
    [Crossref]
  36. J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
    [Crossref]
  37. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  38. S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
    [Crossref] [PubMed]
  39. H. Fan, S. Kumar, R. Daschner, H. Kübler, and J. Shaffer, “Sub-wavelength microwave electric field imaging using Rydberg atoms inside atomic vapor cells,” Opt. Lett. 39, 3030–3033 (2014).
    [Crossref] [PubMed]
  40. C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
    [Crossref]
  41. J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
    [Crossref] [PubMed]
  42. T. F. Gallagher, Rydberg Atoms (Cambridge University, 2005).
  43. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [Crossref] [PubMed]
  44. G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
    [Crossref]
  45. H.-J. Song, K.-H. Oh, N. Shimizu, N. Kukutsu, and Y. Kado, “Generation of frequency-modulated sub-terahertz signal using microwave photonic technique,” Opt. Express 18, 15936–15941 (2010).
    [Crossref] [PubMed]
  46. M. Porer, J.-M. Ménard, and R. Huber, “Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling,” Opt. Lett. 39, 2435–2438 (2014).
    [Crossref] [PubMed]
  47. K. Kokeyama, K. Izumi, W. Z. Korth, N. S.-Lefebvre, K. Arai, and R. X. Adhikari, “Residual amplitude modulation in interferometric gravitational wave detectors,” J. Opt. Soc. Am. A 31, 81–88 (2014).
    [Crossref]
  48. G. d. Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T.-Y. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express 17, 828–837 (2009).
    [Crossref] [PubMed]
  49. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87(2001).
    [Crossref]
  50. Y. Yu, Y. Wang, and J. R. Pratt, “Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer,” Rev. Sci. Instrum. 87, 033101 (2016).
    [Crossref] [PubMed]
  51. J. Ye and T. W. Lynn, “Applications of optical cavities in modern atomic, molecular, and optical physics,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 49, B. Bederson and H. Walther, eds. (Academic Press, 2003).
    [Crossref]
  52. H. Riris, C. B. Carlisle, D. F. McMillen, and D. E. Cooper, “Explosives detection with a frequency modulation spectrometer,” Appl. Opt. 35, 4694–4704 (1996).
    [Crossref] [PubMed]
  53. B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett. 94, 251110 (2009).
    [Crossref]
  54. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [Crossref]
  55. D. R. Hjelme, S. Neegard, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1732–1734 (1995).
    [Crossref]
  56. R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, ”Frequency modulation spectroscopy with a THz quantum-cascade laser,” Opt. Express 21, 32199–32206 (2013).
    [Crossref]
  57. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [Crossref]
  58. W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 ×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
    [Crossref] [PubMed]
  59. Z. Li, W. Ma, W. Yang, Y. Wang, and Y. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
    [Crossref] [PubMed]
  60. U.L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, ”30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
    [Crossref]
  61. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [Crossref]
  62. A. Schwettmann, J. Sedlacek, and J.P. Shaffer, ”FPGA-based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82, 103103 (2011).
    [Crossref]
  63. J. M. Supplee, E. A. Whittaker, and W. Lenth, ”Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [Crossref] [PubMed]
  64. M. Vasilyev, “Matched filtering of ultrashort pulses,” Science 350, 1314–1315 (2015).
    [Crossref] [PubMed]
  65. R. N. McDonough and A. D. Whalen, Detection of Signals in Noise (Academic Press, 1995).
  66. H. Riris, C. B. Carlisle, R. E. Warren, and D. E. Cooper, ”Signal-to-noise ratio enhancement in frequency-modulation spectrometers by digital signal processing,” Opt. Lett. 19, 144–146 (1994).
    [Crossref] [PubMed]
  67. R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley and Sons, 1983).
  68. Amy R. Trangsrud, The SPIDER CMB Polarimeter, Ph.D. Thesis, California Institute of TechnologyPasadena, California (2012).
  69. T. L. Wilson, K. Rohlfs, and S. Hüttemeister, Tools of Radio Astronomy, 5th ed. (Springer-Verlag, 2009).
  70. P. D. Bernardis, ”The Cosmic microwave background : a window on the early universe,” Nucl. Phys. B (Proc. Suppl.) 243, 33–43 (2013).
    [Crossref]

2017 (1)

S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

2016 (7)

Y. Yu, Y. Wang, and J. R. Pratt, “Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer,” Rev. Sci. Instrum. 87, 033101 (2016).
[Crossref] [PubMed]

Z. Li, W. Ma, W. Yang, Y. Wang, and Y. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
[Crossref] [PubMed]

U.L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, ”30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

H. Fan, S. Kumar, H. Kübler, and J. P. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]

2015 (5)

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

M. Vasilyev, “Matched filtering of ultrashort pulses,” Science 350, 1314–1315 (2015).
[Crossref] [PubMed]

2014 (9)

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 ×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

H. Fan, S. Kumar, R. Daschner, H. Kübler, and J. Shaffer, “Sub-wavelength microwave electric field imaging using Rydberg atoms inside atomic vapor cells,” Opt. Lett. 39, 3030–3033 (2014).
[Crossref] [PubMed]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

M. Porer, J.-M. Ménard, and R. Huber, “Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling,” Opt. Lett. 39, 2435–2438 (2014).
[Crossref] [PubMed]

K. Kokeyama, K. Izumi, W. Z. Korth, N. S.-Lefebvre, K. Arai, and R. X. Adhikari, “Residual amplitude modulation in interferometric gravitational wave detectors,” J. Opt. Soc. Am. A 31, 81–88 (2014).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref] [PubMed]

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

D. P.-Barato and C. S. Adams, “All-optical quantum information processing using Rydberg gates,” Phys. Rev. Lett. 112, 040501 (2014).
[Crossref]

2013 (4)

V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref] [PubMed]

R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, ”Frequency modulation spectroscopy with a THz quantum-cascade laser,” Opt. Express 21, 32199–32206 (2013).
[Crossref]

P. D. Bernardis, ”The Cosmic microwave background : a window on the early universe,” Nucl. Phys. B (Proc. Suppl.) 243, 33–43 (2013).
[Crossref]

2012 (2)

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

P. Böhi and P. Treutlein, “Simple microwave field imaging technique using hot atomic vapor cells,” Appl. Phys. Lett. 101, 181107 (2012).
[Crossref]

2011 (3)

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

A. Schwettmann, J. Sedlacek, and J.P. Shaffer, ”FPGA-based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82, 103103 (2011).
[Crossref]

2010 (4)

H.-J. Song, K.-H. Oh, N. Shimizu, N. Kukutsu, and Y. Kado, “Generation of frequency-modulated sub-terahertz signal using microwave photonic technique,” Opt. Express 18, 15936–15941 (2010).
[Crossref] [PubMed]

P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein, “Imaging of microwave fields using ultracold atoms,” Appl. Phys. Lett. 97, 051101 (2010).
[Crossref]

M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, “Polarized alkali-metal vapor with minute-long transverse spin-relaxation time,” Phys. Rev. Lett. 105, 070801 (2010).
[Crossref] [PubMed]

H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
[Crossref]

2009 (4)

R. Löw and T. Pfau, “Magneto-optics: hot atoms rotate light rapidly,” Nat. Photonics 3, 197–199 (2009).
[Crossref]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett. 94, 251110 (2009).
[Crossref]

G. d. Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T.-Y. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express 17, 828–837 (2009).
[Crossref] [PubMed]

2008 (1)

A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[Crossref]

2007 (3)

J. M. Obrecht, R. J. Wild, and E. A. Cornell, “Measuring electric fields from surface contaminants with neutral atoms,” Phys. Rev. A 75, 062903 (2007).
[Crossref]

A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2005 (2)

D. Paulusse, N. Rowell, and A. Michaud, “Accuracy of an atomic microwave power standard,” IEEE Trans. Instrum. Meas. 54, 692–695 (2005).
[Crossref]

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref] [PubMed]

2004 (1)

T. Crowley, E. Donley, and T. Heavner, “Quantum-based microwave power measurements: Proof-of-concept experiment,” Rev. Sci. Instrum. 75, 2575–2580 (2004).
[Crossref]

2003 (1)

V. Tishchenko, V. Tokatly, and V. Luk’yanov, “The beginning of the metrology of radio-frequency electromagnetic fields and the first standards of electric field strength,” Meas. Tech. 46, 76–84 (2003).
[Crossref]

2002 (1)

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theory Tech. 50, 963–974 (2002).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87(2001).
[Crossref]

1999 (1)

E. Thostenson and T.-W. Chou, “Microwave processing: fundamentals and applications,” Composites Part A: Appl. Sci. Manuf. 30, 1055–1071 (1999).
[Crossref]

1996 (1)

1995 (1)

D. R. Hjelme, S. Neegard, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1732–1734 (1995).
[Crossref]

1994 (3)

1993 (1)

D. Weiss, B. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70, 2706–2709 (1993).
[Crossref] [PubMed]

1985 (2)

1981 (2)

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[Crossref]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

1980 (1)

Acosta, V.

V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref] [PubMed]

Adams, C.

A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[Crossref]

A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Adams, C. S.

D. P.-Barato and C. S. Adams, “All-optical quantum information processing using Rydberg gates,” Phys. Rev. Lett. 112, 040501 (2014).
[Crossref]

Adhikari, R. X.

Andersen, U.L.

U.L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, ”30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Anderson, D.

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

Arai, K.

Aspelmeyer, M.

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

Balabas, M. V.

M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, “Polarized alkali-metal vapor with minute-long transverse spin-relaxation time,” Phys. Rev. Lett. 105, 070801 (2010).
[Crossref] [PubMed]

Balasubramanian, G.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Baluktsian, T.

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
[Crossref]

Bason, M.

A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[Crossref]

Beausoleil, R.

V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref] [PubMed]

Benko, C.

Bernardis, P. D.

P. D. Bernardis, ”The Cosmic microwave background : a window on the early universe,” Nucl. Phys. B (Proc. Suppl.) 243, 33–43 (2013).
[Crossref]

Bjorklund, G. C.

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87(2001).
[Crossref]

Böhi, P.

P. Böhi and P. Treutlein, “Simple microwave field imaging technique using hot atomic vapor cells,” Appl. Phys. Lett. 101, 181107 (2012).
[Crossref]

P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein, “Imaging of microwave fields using ultracold atoms,” Appl. Phys. Lett. 97, 051101 (2010).
[Crossref]

Booth, D.

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

Booth, J. P.

J. P. Booth, M. Fadlallah, J. Derouard, and N. Sadeghi, “Electric field measurements in discharges by 2+1 photon laser Stark spectroscopy of atomic hydrogen,” Appl. Phys. Lett. 65, 819–821 (1994).
[Crossref]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Boyd, R. W.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley and Sons, 1983).

Brune, M.

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Budker, D.

V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref] [PubMed]

M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, “Polarized alkali-metal vapor with minute-long transverse spin-relaxation time,” Phys. Rev. Lett. 105, 070801 (2010).
[Crossref] [PubMed]

Butscher, B.

A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[Crossref]

Cacciapuoti, L.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref] [PubMed]

Cappellaro, P.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” arXiv:1611.02427v1 (2016).

Carlisle, C. B.

Chou, T.-W.

E. Thostenson and T.-W. Chou, “Microwave processing: fundamentals and applications,” Composites Part A: Appl. Sci. Manuf. 30, 1055–1071 (1999).
[Crossref]

Chu, S.

D. Weiss, B. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70, 2706–2709 (1993).
[Crossref] [PubMed]

Chua, S.

Cole, G. D.

Cooper, D. E.

Cornell, E. A.

J. M. Obrecht, R. J. Wild, and E. A. Cornell, “Measuring electric fields from surface contaminants with neutral atoms,” Phys. Rev. A 75, 062903 (2007).
[Crossref]

Cronin, A. D.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Crowley, T.

T. Crowley, E. Donley, and T. Heavner, “Quantum-based microwave power measurements: Proof-of-concept experiment,” Rev. Sci. Instrum. 75, 2575–2580 (2004).
[Crossref]

Daschner, R.

Davis, S.

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Degen, C. L.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” arXiv:1611.02427v1 (2016).

Derouard, J.

J. P. Booth, M. Fadlallah, J. Derouard, and N. Sadeghi, “Electric field measurements in discharges by 2+1 photon laser Stark spectroscopy of atomic hydrogen,” Appl. Phys. Lett. 65, 819–821 (1994).
[Crossref]

Dietsche, E-K.

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Doherty, M.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Dolde, F.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Donley, E.

T. Crowley, E. Donley, and T. Heavner, “Quantum-based microwave power measurements: Proof-of-concept experiment,” Rev. Sci. Instrum. 75, 2575–2580 (2004).
[Crossref]

Eichholz, R.

Facon, A.

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Fadlallah, M.

J. P. Booth, M. Fadlallah, J. Derouard, and N. Sadeghi, “Electric field measurements in discharges by 2+1 photon laser Stark spectroscopy of atomic hydrogen,” Appl. Phys. Lett. 65, 819–821 (1994).
[Crossref]

Fan, H.

S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Fan, S. Kumar, H. Kübler, and J. P. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

H. Fan, S. Kumar, R. Daschner, H. Kübler, and J. Shaffer, “Sub-wavelength microwave electric field imaging using Rydberg atoms inside atomic vapor cells,” Opt. Lett. 39, 3030–3033 (2014).
[Crossref] [PubMed]

Fan, H.Q.

H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
[Crossref]

Fedder, H.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Gallagher, T. F.

T. F. Gallagher, Rydberg Atoms (Cambridge University, 2005).

Gehring, T.

U.L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, ”30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Gehrtz, M.

Gleyzes, Sébastien

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Gordon, J.

H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

Grahn, H. T.

Grosso, D.

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Hagemann, C.

Hall, J. L.

Hänsch, T. W.

P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein, “Imaging of microwave fields using ultracold atoms,” Appl. Phys. Lett. 97, 051101 (2010).
[Crossref]

Happer, W.

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett. 94, 251110 (2009).
[Crossref]

Haroche, S.

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Heavner, T.

T. Crowley, E. Donley, and T. Heavner, “Quantum-based microwave power measurements: Proof-of-concept experiment,” Rev. Sci. Instrum. 75, 2575–2580 (2004).
[Crossref]

Hey, R.

Hjelme, D. R.

D. R. Hjelme, S. Neegard, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1732–1734 (1995).
[Crossref]

Hoffer, R.

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

Hollenberg, L.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Holloway, C.

H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

Huber, B.

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

Huber, R.

Hübers, H.-W.

Hüttemeister, S.

T. L. Wilson, K. Rohlfs, and S. Hüttemeister, Tools of Radio Astronomy, 5th ed. (Springer-Verlag, 2009).

Izumi, K.

Jackson, T.

A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Jau, Y.-Y.

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett. 94, 251110 (2009).
[Crossref]

Jefferts, S.

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

Jelezko, F.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Jensen, K.

V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref] [PubMed]

Kado, Y.

Karaulanov, T.

M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, “Polarized alkali-metal vapor with minute-long transverse spin-relaxation time,” Phys. Rev. Lett. 105, 070801 (2010).
[Crossref] [PubMed]

Karimkashi, S.

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

Kim, E.

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

Kokeyama, K.

Kölle, A.

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

Korth, W. Z.

Kübler,

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

Kübler, H.

S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Fan, S. Kumar, H. Kübler, and J. P. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]

H. Fan, S. Kumar, R. Daschner, H. Kübler, and J. Shaffer, “Sub-wavelength microwave electric field imaging using Rydberg atoms inside atomic vapor cells,” Opt. Lett. 39, 3030–3033 (2014).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
[Crossref]

Kukutsu, N.

Kumar, S.

S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Fan, S. Kumar, H. Kübler, and J. P. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
[Crossref]

H. Fan, S. Kumar, R. Daschner, H. Kübler, and J. Shaffer, “Sub-wavelength microwave electric field imaging using Rydberg atoms inside atomic vapor cells,” Opt. Lett. 39, 3030–3033 (2014).
[Crossref] [PubMed]

Lam, T. T.-Y.

Landgrebe, D.

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Ledbetter, M. P.

M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, “Polarized alkali-metal vapor with minute-long transverse spin-relaxation time,” Phys. Rev. Lett. 105, 070801 (2010).
[Crossref] [PubMed]

Legero, T.

Lenth, W.

Lesanovsky, I.

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

Leuchs, G.

U.L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, ”30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Levenson, M. D.

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[Crossref]

Li, Z.

Lindenlaub, J.

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Löw, R.

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
[Crossref]

R. Löw and T. Pfau, “Magneto-optics: hot atoms rotate light rapidly,” Nat. Photonics 3, 197–199 (2009).
[Crossref]

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Luk’yanov, V.

V. Tishchenko, V. Tokatly, and V. Luk’yanov, “The beginning of the metrology of radio-frequency electromagnetic fields and the first standards of electric field strength,” Meas. Tech. 46, 76–84 (2003).
[Crossref]

Lynn, T. W.

J. Ye and T. W. Lynn, “Applications of optical cavities in modern atomic, molecular, and optical physics,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 49, B. Bederson and H. Walther, eds. (Academic Press, 2003).
[Crossref]

Ma, W.

Machluf, S.

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

Marquardt, C.

U.L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, ”30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Martin, M. J.

McClelland, D. E.

McDonough, R. N.

R. N. McDonough and A. D. Whalen, Detection of Signals in Noise (Academic Press, 1995).

McGuyer, B. H.

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett. 94, 251110 (2009).
[Crossref]

McMillen, D. F.

Ménard, J.-M.

Michaud, A.

D. Paulusse, N. Rowell, and A. Michaud, “Accuracy of an atomic microwave power standard,” IEEE Trans. Instrum. Meas. 54, 692–695 (2005).
[Crossref]

Miller, S.

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

Mohapatra, A.

A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[Crossref]

A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Naber, J.

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

Neegard, S.

D. R. Hjelme, S. Neegard, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1732–1734 (1995).
[Crossref]

Nöbauer, T.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Obrecht, J. M.

J. M. Obrecht, R. J. Wild, and E. A. Cornell, “Measuring electric fields from surface contaminants with neutral atoms,” Phys. Rev. A 75, 062903 (2007).
[Crossref]

Oh, K.-H.

P.-Barato, D.

D. P.-Barato and C. S. Adams, “All-optical quantum information processing using Rydberg gates,” Phys. Rev. Lett. 112, 040501 (2014).
[Crossref]

Paulusse, D.

D. Paulusse, N. Rowell, and A. Michaud, “Accuracy of an atomic microwave power standard,” IEEE Trans. Instrum. Meas. 54, 692–695 (2005).
[Crossref]

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Pfau, T.

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
[Crossref]

R. Löw and T. Pfau, “Magneto-optics: hot atoms rotate light rapidly,” Nat. Photonics 3, 197–199 (2009).
[Crossref]

Phillips, T.

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Porer, M.

Pozar, D.

D. Pozar, Microwave and RF Design of Wireless Systems (Wiley, 2001).

Pratt, J. R.

Y. Yu, Y. Wang, and J. R. Pratt, “Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer,” Rev. Sci. Instrum. 87, 033101 (2016).
[Crossref] [PubMed]

Prevedelli, M.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref] [PubMed]

Pritchard, D. E.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Rabeling, D. S.

Raimond, J.-M.

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Raithel, G.

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

Reinhard, F.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” arXiv:1611.02427v1 (2016).

Rempp, F.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Richter, H.

Riedel, M. F.

P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein, “Imaging of microwave fields using ultracold atoms,” Appl. Phys. Lett. 97, 051101 (2010).
[Crossref]

Riehle, F.

Ripka, F.

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

Riris, H.

Rittenhouse, S. T.

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

Rohlfs, K.

T. L. Wilson, K. Rohlfs, and S. Hüttemeister, Tools of Radio Astronomy, 5th ed. (Springer-Verlag, 2009).

Romalis, M. V.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref] [PubMed]

Rosen, A.

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theory Tech. 50, 963–974 (2002).
[Crossref]

Rosi, G.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref] [PubMed]

Rowell, N.

D. Paulusse, N. Rowell, and A. Michaud, “Accuracy of an atomic microwave power standard,” IEEE Trans. Instrum. Meas. 54, 692–695 (2005).
[Crossref]

S.-Lefebvre, N.

Sadeghi, N.

J. P. Booth, M. Fadlallah, J. Derouard, and N. Sadeghi, “Electric field measurements in discharges by 2+1 photon laser Stark spectroscopy of atomic hydrogen,” Appl. Phys. Lett. 65, 819–821 (1994).
[Crossref]

Sadeghpour, H.

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

Santori, C.

V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref] [PubMed]

Sauer, K. L.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref] [PubMed]

Savukov, I. M.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref] [PubMed]

Schlagmüller, M.

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Schmiedmayer, J.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Schrottke, L.

Schwarzkopf, A.

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

Schwettmann, A.

J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

A. Schwettmann, J. Sedlacek, and J.P. Shaffer, ”FPGA-based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82, 103103 (2011).
[Crossref]

Sedelacek, J.A.

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

Sedlacek, J.

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

A. Schwettmann, J. Sedlacek, and J.P. Shaffer, ”FPGA-based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82, 103103 (2011).
[Crossref]

Seltzer, S. J.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref] [PubMed]

Shaddock, D. A.

Shaffer, J.

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

H. Fan, S. Kumar, R. Daschner, H. Kübler, and J. Shaffer, “Sub-wavelength microwave electric field imaging using Rydberg atoms inside atomic vapor cells,” Opt. Lett. 39, 3030–3033 (2014).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref] [PubMed]

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
[Crossref]

Shaffer, J. P.

S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

H. Fan, S. Kumar, H. Kübler, and J. P. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

Shaffer, J.P.

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
[Crossref]

A. Schwettmann, J. Sedlacek, and J.P. Shaffer, ”FPGA-based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82, 103103 (2011).
[Crossref]

Sheng, J.

S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

Shimizu, N.

Silva, L.

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Slagmolen, B. J. J.

Song, H.-J.

Sorrentino, F.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref] [PubMed]

Soudijn, M. L.

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

Spreeuw, R. J. C.

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

Sterr, U.

Stuchly, M. A.

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theory Tech. 50, 963–974 (2002).
[Crossref]

Supplee, J. M.

Swain, P.

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Thaicharoen, N.

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

Thostenson, E.

E. Thostenson and T.-W. Chou, “Microwave processing: fundamentals and applications,” Composites Part A: Appl. Sci. Manuf. 30, 1055–1071 (1999).
[Crossref]

Tino, G. M.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref] [PubMed]

Tishchenko, V.

V. Tishchenko, V. Tokatly, and V. Luk’yanov, “The beginning of the metrology of radio-frequency electromagnetic fields and the first standards of electric field strength,” Meas. Tech. 46, 76–84 (2003).
[Crossref]

Tokatly, V.

V. Tishchenko, V. Tokatly, and V. Luk’yanov, “The beginning of the metrology of radio-frequency electromagnetic fields and the first standards of electric field strength,” Meas. Tech. 46, 76–84 (2003).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Torralbo-Campo, L.

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

Trangsrud, Amy R.

Amy R. Trangsrud, The SPIDER CMB Polarimeter, Ph.D. Thesis, California Institute of TechnologyPasadena, California (2012).

Treutlein, P.

P. Böhi and P. Treutlein, “Simple microwave field imaging technique using hot atomic vapor cells,” Appl. Phys. Lett. 101, 181107 (2012).
[Crossref]

P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein, “Imaging of microwave fields using ultracold atoms,” Appl. Phys. Lett. 97, 051101 (2010).
[Crossref]

Urvoy, A.

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

van Druten, N. J.

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

van Linden van den Heuvell, H. B.

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

Vartdal, E.

D. R. Hjelme, S. Neegard, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1732–1734 (1995).
[Crossref]

Vasilyev, M.

M. Vasilyev, “Matched filtering of ultrashort pulses,” Science 350, 1314–1315 (2015).
[Crossref] [PubMed]

Vine, G. d.

Vorst, A. V.

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theory Tech. 50, 963–974 (2002).
[Crossref]

Wang, Y.

Z. Li, W. Ma, W. Yang, Y. Wang, and Y. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
[Crossref] [PubMed]

Y. Yu, Y. Wang, and J. R. Pratt, “Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer,” Rev. Sci. Instrum. 87, 033101 (2016).
[Crossref] [PubMed]

Warren, R. E.

Weatherhill, K.

A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[Crossref]

Weck, P.F.

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

Weiss, D.

D. Weiss, B. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70, 2706–2709 (1993).
[Crossref] [PubMed]

Whalen, A. D.

R. N. McDonough and A. D. Whalen, Detection of Signals in Noise (Academic Press, 1995).

Whittaker, E. A.

Wienold, M.

Wild, R. J.

J. M. Obrecht, R. J. Wild, and E. A. Cornell, “Measuring electric fields from surface contaminants with neutral atoms,” Phys. Rev. A 75, 062903 (2007).
[Crossref]

Wilson, T. L.

T. L. Wilson, K. Rohlfs, and S. Hüttemeister, Tools of Radio Astronomy, 5th ed. (Springer-Verlag, 2009).

Wolf, T.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Wong, N. C.

Wrachtrup, J.

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

Wuchenich, D. M.

Yang, W.

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 ×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

J. Ye and T. W. Lynn, “Applications of optical cavities in modern atomic, molecular, and optical physics,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 49, B. Bederson and H. Walther, eds. (Academic Press, 2003).
[Crossref]

Young, B.

D. Weiss, B. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70, 2706–2709 (1993).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, Y. Wang, and J. R. Pratt, “Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer,” Rev. Sci. Instrum. 87, 033101 (2016).
[Crossref] [PubMed]

Zhang, W.

Zheng, Y.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87(2001).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (7)

B. H. McGuyer, Y.-Y. Jau, and W. Happer, “Simple method of light-shift suppression in optical pumping systems,” Appl. Phys. Lett. 94, 251110 (2009).
[Crossref]

J. Gordon, C. Holloway, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett. 105, 024104 (2014).
[Crossref]

C. Holloway, J. Gordon, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms,” Appl. Phys. Lett. 104, 244102 (2014).
[Crossref]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[Crossref]

P. Böhi and P. Treutlein, “Simple microwave field imaging technique using hot atomic vapor cells,” Appl. Phys. Lett. 101, 181107 (2012).
[Crossref]

J. P. Booth, M. Fadlallah, J. Derouard, and N. Sadeghi, “Electric field measurements in discharges by 2+1 photon laser Stark spectroscopy of atomic hydrogen,” Appl. Phys. Lett. 65, 819–821 (1994).
[Crossref]

P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein, “Imaging of microwave fields using ultracold atoms,” Appl. Phys. Lett. 97, 051101 (2010).
[Crossref]

Composites Part A: Appl. Sci. Manuf. (1)

E. Thostenson and T.-W. Chou, “Microwave processing: fundamentals and applications,” Composites Part A: Appl. Sci. Manuf. 30, 1055–1071 (1999).
[Crossref]

IEEE Trans. Antennas Prop. (1)

C. Holloway, J. Gordon, S. Jefferts, A. Schwarzkopf, D. Anderson, S. Miller, N. Thaicharoen, and G. Raithel, “Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements,” IEEE Trans. Antennas Prop. 62, 6169–6182 (2014).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

D. Paulusse, N. Rowell, and A. Michaud, “Accuracy of an atomic microwave power standard,” IEEE Trans. Instrum. Meas. 54, 692–695 (2005).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theory Tech. 50, 963–974 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phy. B (1)

J. Naber, S. Machluf, L. Torralbo-Campo, M. L. Soudijn, N. J. van Druten, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Adsorbate dynamics on a silica-coated gold surface measured by Rydberg Stark spectroscopy,” J. Phy. B 49, 094005 (2016).
[Crossref]

J. Phys. B (1)

H. Fan, S. Kumar, H. Kübler, and J. P. Shaffer, “Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell,” J. Phys. B 49, 104004 (2016).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (1)

H. Fan, S. Kumar, J. Sedlacek, Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based RF electric field sensing,” J. Phys. B: At., Mol. Opt. Phys. 48, 202001 (2015).
[Crossref]

Meas. Tech. (1)

V. Tishchenko, V. Tokatly, and V. Luk’yanov, “The beginning of the metrology of radio-frequency electromagnetic fields and the first standards of electric field strength,” Meas. Tech. 46, 76–84 (2003).
[Crossref]

Nat. Photonics (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

H. Kübler, J. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010).
[Crossref]

R. Löw and T. Pfau, “Magneto-optics: hot atoms rotate light rapidly,” Nat. Photonics 3, 197–199 (2009).
[Crossref]

Nat. Phys. (3)

F. Dolde, H. Fedder, M. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup, “Electric-field sensing using single diamond spins,” Nat. Phys. 7, 459–463 (2011).
[Crossref]

J. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012).
[Crossref]

A. Mohapatra, M. Bason, B. Butscher, K. Weatherhill, and C. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[Crossref]

Nature (2)

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref] [PubMed]

A. Facon, E-K. Dietsche, D. Grosso, S. Haroche, J.-M. Raimond, M. Brune, and Sébastien Gleyzes, “A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state,” Nature 535, 262–265 (2016).
[Crossref] [PubMed]

Nucl. Phys. B (Proc. Suppl.) (1)

P. D. Bernardis, ”The Cosmic microwave background : a window on the early universe,” Nucl. Phys. B (Proc. Suppl.) 243, 33–43 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

H. Fan, S. Kumar, R. Daschner, H. Kübler, and J. Shaffer, “Sub-wavelength microwave electric field imaging using Rydberg atoms inside atomic vapor cells,” Opt. Lett. 39, 3030–3033 (2014).
[Crossref] [PubMed]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 ×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref] [PubMed]

Z. Li, W. Ma, W. Yang, Y. Wang, and Y. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41, 3331–3334 (2016).
[Crossref] [PubMed]

H. Riris, C. B. Carlisle, R. E. Warren, and D. E. Cooper, ”Signal-to-noise ratio enhancement in frequency-modulation spectrometers by digital signal processing,” Opt. Lett. 19, 144–146 (1994).
[Crossref] [PubMed]

M. Porer, J.-M. Ménard, and R. Huber, “Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling,” Opt. Lett. 39, 2435–2438 (2014).
[Crossref] [PubMed]

D. R. Hjelme, S. Neegard, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1732–1734 (1995).
[Crossref]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[Crossref] [PubMed]

Phys. Rev. A (2)

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[Crossref]

J. M. Obrecht, R. J. Wild, and E. A. Cornell, “Measuring electric fields from surface contaminants with neutral atoms,” Phys. Rev. A 75, 062903 (2007).
[Crossref]

Phys. Rev. Appl. (1)

H.Q. Fan, S. Kumar, C. Holloway, J. Gordon, and J.P. Shaffer, ”Effects of vapor cell size on Rydberg atom electrometry,” Phys. Rev. Appl. 4, 044015 (2015).
[Crossref]

Phys. Rev. Lett. (10)

J. Sedlacek, A. Schwettmann, H. Kübler, and J. Shaffer, “Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell,” Phys. Rev. Lett. 111, 063001 (2013).
[Crossref] [PubMed]

A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref] [PubMed]

D. Weiss, B. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70, 2706–2709 (1993).
[Crossref] [PubMed]

V. Acosta, K. Jensen, C. Santori, D. Budker, and R. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[Crossref] [PubMed]

J.A. Sedelacek, E. Kim, S. T. Rittenhouse, P.F. Weck, H. Sadeghpour, and J.P. Shaffer, “Electric field cancellation in quartz by Rb adsorbate induced negative electron affinity,” Phys. Rev. Lett. 116, 133201 (2016).
[Crossref]

M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, “Polarized alkali-metal vapor with minute-long transverse spin-relaxation time,” Phys. Rev. Lett. 105, 070801 (2010).
[Crossref] [PubMed]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107, 243001 (2011).
[Crossref]

D. P.-Barato and C. S. Adams, “All-optical quantum information processing using Rydberg gates,” Phys. Rev. Lett. 112, 040501 (2014).
[Crossref]

A. Urvoy, F. Ripka, I. Lesanovsky, D. Booth, J. Shaffer, T. Pfau, and R. Löw, “Strongly correlated growth of Rydberg aggregates in a vapor cell,” Phys. Rev. Lett. 114, 203002 (2015).
[Crossref] [PubMed]

Phys. Scr. (1)

U.L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, ”30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Rev. Mod. Phys. (2)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Rev. Sci. Instrum. (3)

T. Crowley, E. Donley, and T. Heavner, “Quantum-based microwave power measurements: Proof-of-concept experiment,” Rev. Sci. Instrum. 75, 2575–2580 (2004).
[Crossref]

Y. Yu, Y. Wang, and J. R. Pratt, “Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer,” Rev. Sci. Instrum. 87, 033101 (2016).
[Crossref] [PubMed]

A. Schwettmann, J. Sedlacek, and J.P. Shaffer, ”FPGA-based locking circuit for external cavity diode laser frequency stabilization,” Rev. Sci. Instrum. 82, 103103 (2011).
[Crossref]

Sci. Rep. (1)

S. Kumar, H. Fan, H. Kübler, J. Sheng, and J. P. Shaffer, “Atom-based sensing of weak radio frequency electric fields using homodyne readout,” Sci. Rep. 7, 42981 (2017).
[Crossref] [PubMed]

Science (1)

M. Vasilyev, “Matched filtering of ultrashort pulses,” Science 350, 1314–1315 (2015).
[Crossref] [PubMed]

Other (9)

R. N. McDonough and A. D. Whalen, Detection of Signals in Noise (Academic Press, 1995).

R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley and Sons, 1983).

Amy R. Trangsrud, The SPIDER CMB Polarimeter, Ph.D. Thesis, California Institute of TechnologyPasadena, California (2012).

T. L. Wilson, K. Rohlfs, and S. Hüttemeister, Tools of Radio Astronomy, 5th ed. (Springer-Verlag, 2009).

J. Ye and T. W. Lynn, “Applications of optical cavities in modern atomic, molecular, and optical physics,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 49, B. Bederson and H. Walther, eds. (Academic Press, 2003).
[Crossref]

T. F. Gallagher, Rydberg Atoms (Cambridge University, 2005).

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” arXiv:1611.02427v1 (2016).

D. Pozar, Microwave and RF Design of Wireless Systems (Wiley, 2001).

S. Davis, D. Landgrebe, T. Phillips, P. Swain, R. Hoffer, J. Lindenlaub, and L. Silva, “Remote sensing: the quantitative approach,” in Remote Sensing: the Quantitative Approach, Vol. 1, P. Swain and S. Davis, eds. (McGraw-HillInternational Book Company, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The atomic energy level scheme for the measurements. The probe laser has a wavelength of ∼ 852 nm while the coupling laser wavelength is ∼ 509 nm. These lasers are nearly resonant with both transitions. The dipole moments and approximate wavelengths for each transition are shown. (b) Shows the probe transmission signal vs probe laser detuning for different RF E-field strengths. These measurements show the AT regime. The measurements were carried out with amplitude modulation of the coupling laser beam similar to [6].

Fig. 2
Fig. 2

Shows a schematic of the experimental setup for the FM spectroscopy experiments, where acronyms are EOM, electro-optic phase modulator; BS, beam splitter; PBS, polarizing beam splitter; FPGA, field programming gate array; λ/2(λ/4) half (quarter) -waveplate; ϕ1, ϕ2, phase shifters.

Fig. 3
Fig. 3

(a) Shows an example of the Allan deviation of the RAM signal vs. sampling time with the RAM lock on (red) and off (black). Inset of (a) shows the corresponding RAM signal vs. time with the RAM lock on (red) and off (black). (b) Shows an example of the Allan deviation of the probe laser transmission signal on the EIT resonance vs. sampling time with the RAM lock on (red) and off (black). Inset of (b) shows the corresponding FM signal at two-photon resonance vs. time with the RAM lock on (red) and off (black). The units are arbitrary for these plots because they were calculated directly from the data which involves scaling factors due to the signal processing. The plots show a typical comparison between the RAM locked and unlocked performance for the two different cases described. (c) Shows the Fourier transform (FT) of the signal under similar conditions as (b) with the RAM lock on (red), RAM lock off (black) and no light falling on the probe detector (blue). The FT data demonstrates the reduction in noise due to the RAM lock for shorter time scales. The RAM lock reduces the noise floor to that of the oscilloscope used to acquire the data displayed in the figure.

Fig. 4
Fig. 4

(a) Shows the probe transmission as a function of probe laser detuning for different modulation depths. (b) Shows the probe transmission signal as a function of the LO phase with the probe and coupling lasers on resonance. The probe transmission is recorded under conditions where the reference phase used to demodulate the probe transmission signal is in the quadrature condition.

Fig. 5
Fig. 5

(a) Shows the probe transmission as a function of RF detuning at a RF E-field strength of 75 µV/cm. The probe laser is resonant while the coupling laser is detuned. (b) Probe laser transmission as a function of RF E-field strength for the coupling laser on resonance (black curve) and detuned by 1 MHz (red curve). The data was taken with a 1 Hz detection bandwidth.

Fig. 6
Fig. 6

(a) The plot shows probe transmission vs RF detuning at different values of RF E-field strengths. The black curves are the recorded data and red curves are the Lorentzian fits. The data were taken with the same probe and coupling Rabi frequencies 2π × 6.7 ± 0.05 MHz and 2π × 7.0 ± 0.05 MHz, respectively. (b) The plot shows probe signal vs RF detuning using the matched filter at different values of RF E-field strengths. All parameters are the same as in (a). The data was acquired using a 1 Hz detection bandwidth. Each Lorentzian fit gave a full width at half maximum of 5.5 MHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( n ω m ) = | E 0 | 2 sin ( 2 α ) sin ( 2 β ) J n ( M ) sin ( n ω m t ) sin ( Δ ϕ n + Δ ϕ dc ) ,
F ( ν , σ , A , ν c ) = A σ ( ν ν c ) 2 + σ 2 ,
E R F m i n H z = h μ R F N T 2 ,

Metrics