Abstract

We propose a type of ultra-thin metasurfaces composed of rectangular graphene patches supporting orthogonal plasmonic resonances, which can work in transmission or reflection modes for dynamic terahertz wavefront manipulation with high polarization conversion ratio. By controlling the response of each patch via electrical biasing, the phase of the output wave can be tuned in a wide range over 180° while keeping its amplitude high and relatively stable. We demonstrate several functional devices based on such metasurfaces: a linear polarization converter with nearly 100% polarization conversion ratio, a switchable anomalous wave deflection device, and a dual-polarity focusing mirror with the focal spot tunable in both the transversal and longitudinal directions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 23(21) 27230-27239 (2015)

An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface

Dacheng Wang, Yinghong Gu, Yandong Gong, Cheng-Wei Qiu, and Minghui Hong
Opt. Express 23(9) 11114-11122 (2015)

Tunable Pancharatnam–Berry metasurface for dynamical and high-efficiency anomalous reflection

He-Xiu Xu, Guang-Ming Wang, Tong Cai, Jun Xiao, and Ya-Qiang Zhuang
Opt. Express 24(24) 27836-27848 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  4. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  5. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  6. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  7. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  8. Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  9. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  10. Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
    [Crossref] [PubMed]
  11. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  12. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref] [PubMed]
  13. X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
    [Crossref] [PubMed]
  14. H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
    [Crossref]
  15. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
    [Crossref] [PubMed]
  16. T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wavefront control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
    [Crossref]
  17. L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
    [Crossref]
  18. Z. Su, X. Chen, J. Yin, and X. Zhao, “Graphene-based terahertz metasurface with tunable spectrum splitting,” Opt. Lett. 41(16), 3799–3802 (2016).
    [Crossref] [PubMed]
  19. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  21. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  22. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]

2016 (3)

2015 (6)

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wavefront control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

2014 (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

2013 (3)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

2012 (3)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, Q.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Chen, S.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, X.

Cheng, H.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Fan, Y.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guo, J.

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hattori, H. T.

L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

He, D.

Hu, X.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Ishikawa, A.

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wavefront control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jiang, Y.

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Koschny, T.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Li, H.

Li, J.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, Z.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Liu, L.

L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Liu, W.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Liu, Y.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Liu, Z.

Luo, Y.

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mousavi, H. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Neshev, D. N.

L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Powell, D. A.

L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Pu, Y.

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Shadrivov, I. V.

L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shen, N.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shen, S.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Shvets, G.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Song, S.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Su, Z.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tan, J.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tian, J.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Tsuruta, K.

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wavefront control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

Wei, Z.

Wen, L.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Xia, F.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Xie, B.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xu, J.

Yang, C.

Yao, K.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Yatooshi, T.

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wavefront control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

Yin, J.

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, P.

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zarate, Y.

L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

Zhang, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, Z.

Zhao, X.

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

ACS Photonics (3)

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, H. S. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Y. Fan, N. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

H. Cheng, S. Chen, P. Yu, W. Liu, Z. Li, J. Li, B. Xie, and J. Tian, “Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces,” Adv. Opt. Mater. 3(12), 1744–1749 (2015).
[Crossref]

Appl. Phys. Lett. (3)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tan, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

T. Yatooshi, A. Ishikawa, and K. Tsuruta, “Terahertz wavefront control by tunable metasurface made of graphene ribbons,” Appl. Phys. Lett. 107(5), 053105 (2015).
[Crossref]

L. Liu, Y. Zarate, H. T. Hattori, D. N. Neshev, I. V. Shadrivov, and D. A. Powell, “Terahertz focusing of multiple wavelengths by graphene metasurfaces,” Appl. Phys. Lett. 108(3), 031106 (2016).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Nanotechnology (1)

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene plasmonic metasurfaces to steer infrared light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the unit cell containing the graphene patch. (b) Amplitudes (solid lines) and phases (dashed lines) of the electric fields scattered in z-direction by the two resonance modes. (c) Amplitude and phase of the cross-polarized reflected field. (d) Amplitude and phase of the co-polarized reflected field.

Fig. 2
Fig. 2

Amplitudes of the S-matrix components of an air-silica interface under the incident field E 2inc . (b) Amplitudes of the reflection coefficients of the two resonance modes calculated by Eq. (5) (solid lines) and by numerical simulation (dashed lines). (c) Amplitudes of the cross-polarized reflected field of the full structure with different d. (d) Calculated PCR for a structure with d = 20 μm (the dashed line indicates the level of PCR = 0.9). The inset shows the range of the curve where PCR>99%.

Fig. 3
Fig. 3

(a) Schematic of the anomalous reflection metasurface. (b) Dependence of the amplitude and phase of the cross-polarized reflected field on μ z . (c) and (d) are the amplitude and phase of the cross-polarized field with respective to the change of the patch size, respectively.

Fig. 4
Fig. 4

A switchable anomalous beam deflection graphene metasurface. (a) Amplitude and phase of the cross-polarized field reflected by one periodic unit with eight pixels. (b) Phase distribution of the cross-polarized light reflected in −46°, 0° and 46° directions.

Fig. 5
Fig. 5

(a) Desired phase front distributions for focusing mirrors with f=600 μm (solid), f=700 μm (dashed), and f=600 μm with the focal spot right-shifted by 50 μm (dotted). (b) Electric field distribution of the focusing mirror with f=600 μm .

Fig. 6
Fig. 6

Field distributions of the tunable focusing mirror whose focal spot is tuned in longitudinal (a)(b)(c) and transversal (a)(d)(e) directions. (f) Phase distribution of a convex mirror with f=600 μm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ= i e 2 π 2 ( ωi2Γ ) 0 ε[ f d (ε) ε f d (ε) ε ] dε i e 2 ( ωi2Γ ) π 2 0 f d (ε) f d (ε) ( ωi2Γ ) 2 4 (ε/) 2 dε,
f d (ε) [ exp( ε μ c K B T )+1 ] 1
{ E xscat = 2 2 ( E 1 + E 2 ) E yscat = 2 2 ( E 1 E 2 ) .
{ E x = E inc + E xscat =1+ E xscat E y = E yscat .
r= s 11 + s 21 exp[i(4π/λ) n d d]exp(iπ) s 12 1 s 22 exp[i(4π/λ) n d d]exp(iπ) .
PCR= R xy /( R xx + R xy ),
sin θ r =sin θ i + λ 0 2π n i dφ dx
ϕ x =± 2π λ 0 (|f| x 2 + f 2 ),

Metrics