Abstract

A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing

Borwen You, Chien-Chun Peng, Jia-Shing Jhang, Hungh-Hsuan Chen, Chin-Ping Yu, Wei-Chih Lai, Tze-An Liu, Jin-Long Peng, and Ja-Yu Lu
Opt. Express 22(9) 11340-11350 (2014)

A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection

Borwen You, Tze-An Liu, Jin-Long Peng, Ci-Ling Pan, and Ja-Yu Lu
Opt. Express 17(23) 20675-20683 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  2. T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
    [Crossref] [PubMed]
  3. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem 8(17), 2412–2431 (2007).
    [Crossref] [PubMed]
  4. A. R. W. Mckellar, Y. Xu, W. Jäger, and C. Bissonnette, “Isotopic probing of very weak intermolecular forces: microwave and infrared spectra of CO-He isotopomers,” J. Chem. Phys. 110(22), 10766–10773 (1999).
    [Crossref]
  5. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  6. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  7. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  8. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
    [Crossref]
  9. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
    [Crossref]
  10. A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
    [Crossref] [PubMed]
  11. L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
    [Crossref]
  12. S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
    [Crossref]
  13. B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
    [Crossref] [PubMed]
  14. B. You, J. Y. Lu, T. A. Liu, and J. L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
    [Crossref] [PubMed]
  15. S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
    [Crossref]
  16. X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
    [Crossref]
  17. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
    [Crossref] [PubMed]
  18. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
    [Crossref]
  19. E. Hecht, Optics (Addison Wesley, 1998).
  20. A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
    [Crossref]
  21. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
    [Crossref]
  22. B. You, C.-C. Peng, J.-S. Jhang, H.-H. Chen, C.-P. Yu, W.-C. Lai, T.-A. Liu, J.-L. Peng, and J.-Y. Lu, “Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing,” Opt. Express 22(9), 11340–11350 (2014).
    [Crossref] [PubMed]
  23. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluidics 4(1-2), 117–127 (2008).
    [Crossref]
  24. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17(15), 12660–12667 (2009).
    [Crossref] [PubMed]
  25. A. Bertsch, S. Jiguet, P. Bernhard, and P. Renaud, “Microstereolithography: a review,” Proc. MRS 758, 1–15 (2003).
  26. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099 (1983).
    [Crossref] [PubMed]
  27. Amnon Yariv, Optical Electronics in Modern Communications (New York: Oxford University Press, 1997).
  28. F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
    [Crossref]
  29. O. Dorosh and Z. Kisiel, “Electric dipole moments of acetone and of acetic acid measured in supersonic expansion,” Acta Phys. Pol. A 112(Supplement), S95–S104 (2007).
    [Crossref]
  30. L. Chen and S. Oishi, “Terahertz time-domain spectroscopy of organic gases,” Rev. Laser Eng. 34(3), 251–254 (2006).
    [Crossref]
  31. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [Crossref] [PubMed]
  32. A. L. Mcclellan, Tables of Experimental Dipole Moments (Macmillan Higher Education, 1963).

2016 (2)

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

2014 (2)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. You, C.-C. Peng, J.-S. Jhang, H.-H. Chen, C.-P. Yu, W.-C. Lai, T.-A. Liu, J.-L. Peng, and J.-Y. Lu, “Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing,” Opt. Express 22(9), 11340–11350 (2014).
[Crossref] [PubMed]

2013 (6)

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

B. You, J. Y. Lu, T. A. Liu, and J. L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013).
[Crossref] [PubMed]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

2012 (3)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
[Crossref] [PubMed]

2010 (1)

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

2009 (1)

2008 (3)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluidics 4(1-2), 117–127 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

2007 (3)

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem 8(17), 2412–2431 (2007).
[Crossref] [PubMed]

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

O. Dorosh and Z. Kisiel, “Electric dipole moments of acetone and of acetic acid measured in supersonic expansion,” Acta Phys. Pol. A 112(Supplement), S95–S104 (2007).
[Crossref]

2006 (2)

L. Chen and S. Oishi, “Terahertz time-domain spectroscopy of organic gases,” Rev. Laser Eng. 34(3), 251–254 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2003 (2)

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

A. Bertsch, S. Jiguet, P. Bernhard, and P. Renaud, “Microstereolithography: a review,” Proc. MRS 758, 1–15 (2003).

2001 (1)

1999 (1)

A. R. W. Mckellar, Y. Xu, W. Jäger, and C. Bissonnette, “Isotopic probing of very weak intermolecular forces: microwave and infrared spectra of CO-He isotopomers,” J. Chem. Phys. 110(22), 10766–10773 (1999).
[Crossref]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[Crossref] [PubMed]

1983 (1)

Abbott, D.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Abe, Y.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Abram, R. A.

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

Affouard, F.

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

Afshar V, S.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Akiyama, K.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Alameda, J. B.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Alexander, R. W.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Atakaramians, S.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Basov, D. N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bernhard, P.

A. Bertsch, S. Jiguet, P. Bernhard, and P. Renaud, “Microstereolithography: a review,” Proc. MRS 758, 1–15 (2003).

Bertsch, A.

A. Bertsch, S. Jiguet, P. Bernhard, and P. Renaud, “Microstereolithography: a review,” Proc. MRS 758, 1–15 (2003).

Bhatt, J.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Bhatt, P.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Bissonnette, C.

A. R. W. Mckellar, Y. Xu, W. Jäger, and C. Bissonnette, “Isotopic probing of very weak intermolecular forces: microwave and infrared spectra of CO-He isotopomers,” J. Chem. Phys. 110(22), 10766–10773 (1999).
[Crossref]

Bocquet, B.

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

Brand, S.

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Brener, I.

Carter, J. C.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Chamberlain, J. M.

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

Chang, S.-J.

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Chen, H.-H.

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, L.

L. Chen and S. Oishi, “Terahertz time-domain spectroscopy of organic gases,” Rev. Laser Eng. 34(3), 251–254 (2006).
[Crossref]

Chen, Q.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Chen, T.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Chrisp, M.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Cumming, D. R. S.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Deshmukh, P.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Dorosh, O.

O. Dorosh and Z. Kisiel, “Electric dipole moments of acetone and of acetic acid measured in supersonic expansion,” Acta Phys. Pol. A 112(Supplement), S95–S104 (2007).
[Crossref]

Duponchel, L.

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

Esenturk, O.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem 8(17), 2412–2431 (2007).
[Crossref] [PubMed]

Fan, F.

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Fernández-Domínguez, A. I.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gallant, A. J.

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grischkowsky, D.

Gu, W.-H.

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Han, J.

Hangyo, M.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hatirnaz, B.

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

Heilweil, E. J.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem 8(17), 2412–2431 (2007).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[Crossref] [PubMed]

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hsieh, C.-F.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Hu, X.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Jäger, W.

A. R. W. Mckellar, Y. Xu, W. Jäger, and C. Bissonnette, “Isotopic probing of very weak intermolecular forces: microwave and infrared spectra of CO-He isotopomers,” J. Chem. Phys. 110(22), 10766–10773 (1999).
[Crossref]

Jhang, J.-S.

Jiguet, S.

A. Bertsch, S. Jiguet, P. Bernhard, and P. Renaud, “Microstereolithography: a review,” Proc. MRS 758, 1–15 (2003).

Kaliteevski, M. A.

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

Kawabata, T.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Kisiel, Z.

O. Dorosh and Z. Kisiel, “Electric dipole moments of acetone and of acetic acid measured in supersonic expansion,” Acta Phys. Pol. A 112(Supplement), S95–S104 (2007).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Lai, W.-C.

Laurette, S.

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

Lee, J. W.

Li, S.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Liu, T. A.

Liu, T.-A.

Long, L. L.

Lu, J. Y.

Lu, J.-Y.

Maier, S. A.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Manuel, A. M.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Mckellar, A. R. W.

A. R. W. Mckellar, Y. Xu, W. Jäger, and C. Bissonnette, “Isotopic probing of very weak intermolecular forces: microwave and infrared spectra of CO-He isotopomers,” J. Chem. Phys. 110(22), 10766–10773 (1999).
[Crossref]

Mendis, R.

Mirkarimi, P.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Mittleman, D. M.

Miyamaru, F.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Mizaikoff, B.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Monro, T. M.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluidics 4(1-2), 117–127 (2008).
[Crossref]

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Nordlander, P.

O’Hara, J. F.

Oishi, S.

L. Chen and S. Oishi, “Terahertz time-domain spectroscopy of organic gases,” Rev. Laser Eng. 34(3), 251–254 (2006).
[Crossref]

Ordal, M. A.

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Pan, C.-L.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Pan, R.-P.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Park, T. H.

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluidics 4(1-2), 117–127 (2008).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[Crossref] [PubMed]

Peng, C.-C.

Peng, J. L.

Peng, J.-L.

Petty, M.

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

Plusquellic, D. F.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem 8(17), 2412–2431 (2007).
[Crossref] [PubMed]

Prabhu, S. S.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Ranjana, S.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Renaud, P.

A. Bertsch, S. Jiguet, P. Bernhard, and P. Renaud, “Microstereolithography: a review,” Proc. MRS 758, 1–15 (2003).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[Crossref] [PubMed]

Sangala, B. R.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Satyanarayan, M. N.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Siegrist, K.

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem 8(17), 2412–2431 (2007).
[Crossref] [PubMed]

Singh, R.

Smirnova, E.

Smith, D. R.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[Crossref] [PubMed]

Sun, C.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Sun, H.

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Takano, K.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Taylor, A. J.

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tokuda, Y.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Treizebre, A.

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

Umesh, G.

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

Wang, H.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wang, X.-H.

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Ward, C. A.

Wen, L.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wilk, A.

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Wood, D.

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluidics 4(1-2), 117–127 (2008).
[Crossref]

Xu, G.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Xu, Y.

A. R. W. Mckellar, Y. Xu, W. Jäger, and C. Bissonnette, “Isotopic probing of very weak intermolecular forces: microwave and infrared spectra of CO-He isotopomers,” J. Chem. Phys. 110(22), 10766–10773 (1999).
[Crossref]

You, B.

Yu, C. P.

Yu, C.-P.

Zhang, W.

Zhang, X.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Zhang, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Photonics (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Acta Phys. Pol. A (1)

O. Dorosh and Z. Kisiel, “Electric dipole moments of acetone and of acetic acid measured in supersonic expansion,” Acta Phys. Pol. A 112(Supplement), S95–S104 (2007).
[Crossref]

Adv. Opt. Mater. (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Adv. Opt. Photonics (1)

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Anal. Chem. (1)

A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, “Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing,” Anal. Chem. 85(23), 11205–11210 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[Crossref]

Appl. Phys. Lett. (2)

F. Fan, W.-H. Gu, X.-H. Wang, and S.-J. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83(1), 201–203 (2003).
[Crossref]

Chemometr. Intell. Lab. (1)

L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, “Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules,” Chemometr. Intell. Lab. 23, 28–35 (2013).
[Crossref]

ChemPhysChem (1)

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” ChemPhysChem 8(17), 2412–2431 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, and J. M. Chamberlain, “Terahertz frequency bandpass filters,” J. Appl. Phys. 102(2), 023102 (2007).
[Crossref]

J. Chem. Phys. (1)

A. R. W. Mckellar, Y. Xu, W. Jäger, and C. Bissonnette, “Isotopic probing of very weak intermolecular forces: microwave and infrared spectra of CO-He isotopomers,” J. Chem. Phys. 110(22), 10766–10773 (1999).
[Crossref]

J. Infrared Millim. Te. (1)

S. Ranjana, J. Bhatt, P. Bhatt, P. Deshmukh, B. R. Sangala, M. N. Satyanarayan, G. Umesh, and S. S. Prabhu, “Resonant terahertz InSb waveguide device for sensing polymers,” J. Infrared Millim. Te. 37(8), 795–804 (2016).
[Crossref]

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Microfluid. Nanofluidics (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluidics 4(1-2), 117–127 (2008).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Proc. MRS (1)

A. Bertsch, S. Jiguet, P. Bernhard, and P. Renaud, “Microstereolithography: a review,” Proc. MRS 758, 1–15 (2003).

Rev. Laser Eng. (1)

L. Chen and S. Oishi, “Terahertz time-domain spectroscopy of organic gases,” Rev. Laser Eng. 34(3), 251–254 (2006).
[Crossref]

Sensors (Basel) (1)

T. Chen, S. Li, and H. Sun, “Metamaterials application in sensing,” Sensors (Basel) 12(3), 2742–2765 (2012).
[Crossref] [PubMed]

Other (3)

E. Hecht, Optics (Addison Wesley, 1998).

A. L. Mcclellan, Tables of Experimental Dipole Moments (Macmillan Higher Education, 1963).

Amnon Yariv, Optical Electronics in Modern Communications (New York: Oxford University Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic MRA configuration to pass TE-polarized THz waves. (Inset) Microscopic photograph of a MRA. (b) Input and output THz waveforms for the MRAs with different transmission thicknesses.

Fig. 2
Fig. 2

(a) Measured and (b) calculated transmittance spectra of one-, two-, and three-layer MRAs.

Fig. 3
Fig. 3

Electric field distributions in the x-z plane at (a) 0.250 THz, (b) 0.320 THz, and (c) 0.440 THz for the one-layered MRA structure. Time-average Poynting vectors in the x-z plane of the three-layered MRA under different interspace refractive indices and input THz wave frequencies. (d) 1.00 refractive index unit (RIU), 0.250 THz. (e) 1.00 RIU, 0.440 THz. (f) 1.1 RIU, 0.440 THz. The black solid circles in each figure represent the metal rods.

Fig. 4
Fig. 4

(a) Photograph of a mechanical assembly, including a MRA structure (I) and aluminum metal substrates, 42(x) × 10(y) × 52(z) mm3 (II). (b) Photograph of an aluminum substrate, 42(x) × 10(y) × 52(z) mm3, equipped with (III) a rectangular PPWG channel waveguide, 10(x) × 1(y) × 52(z) mm3, (IV) a liquid reservoir, (V) liquid inlet, (VI) five air-microfluidic channels, 8.5(x) × 0.5(y) × 0.8(z) mm3, and (VII) PE tubing. (c) Mechanical drawing and photograph (inset) of a MRA-based microfluidic sensing unit for vapor sensing. The blue arrow represents the PE tubing for liquid analyte injection. (d) Transmittance and (e) phase change of THz-field oscillation induced by acetone vapors inside the PPWG hollow core with and without the three-layer MRA structure.

Fig. 5
Fig. 5

(a) Mechanical drawing and photograph (inset) of a MRA-based microfluidic sensing unit for liquid sensing. (b) Electric field distribution of 0.475THz wave in the MRA across the section of the x-y plane.

Fig. 6
Fig. 6

Schematic description about liquid sensing (a)–(c) without and (d)–(f) with considering the interface layer between the metal substrate and the liquid analytes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E y  = Sin(hx) · exp (iβz),
β  2 = K 0 2 n 2 h 2 ,
λ c ~ 2nd m