Abstract

Smart minimally invasive devices face a connectivity challenge. An example is found in intracardiac echocardiography where the signal transmission and supply of power at the distal end require many thin and fragile wires in order to keep the catheter slim and flexible. We have built a fully functional bench-top prototype to demonstrate that electrical wires may be replaced by optical fibers. The prototype is immediately scalable to catheter dimensions. The absence of conductors will provide intrinsic galvanic isolation as well as radio frequency (RF) and magnetic resonance imaging (MRI) compatibility. Using optical fibers, we show signal transfer of synthetic aperture ultrasound images as well as photo-voltaic conversion to supply all electronics. The simple design utilizes only off the shelf components and holds a promise of cost effectiveness which may be pivotal for translation of these advanced devices into the clinic.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging

Richard J. Colchester, Edward Z. Zhang, Charles A. Mosse, Paul C. Beard, Ioannis Papakonstantinou, and Adrien E. Desjardins
Biomed. Opt. Express 6(4) 1502-1511 (2015)

Epidural catheter with integrated light guides for spectroscopic tissue characterization

R. P. Soto-Astorga, S. West, S. Putnis, J. C. Hebden, and A. E. Desjardins
Biomed. Opt. Express 4(11) 2619-2628 (2013)

Impact of device geometry on the imaging characteristics of an intravascular photoacoustic catheter

Min Wu, Krista Jansen, Geert Springeling, Antonius F. W. van der Steen, and Gijs van Soest
Appl. Opt. 53(34) 8131-8139 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Cosgrove and J. F. Sabik, “Minimally invasive approach for aortic valve operations,” Ann. Thorac. Surg. 62, 596–597 (1996).
    [Crossref] [PubMed]
  2. J. L. Navia and D. M. Cosgrove, “Minimally invasive mitral valve operations,” Ann. Thorac. Surg. 62, 1542–1544 (1996).
    [Crossref] [PubMed]
  3. N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
    [PubMed]
  4. I. Gonzalez, Q. Cao, and Z. Hijazi, “Role of Intracardiac Echocardiography (ICE) in Transcatheter Occlusion of Atrial Septal Defects,” in Atrial Septal Defect, P. S. Rao, ed. (InTech, 2012), pp. 99–118.
  5. T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
    [Crossref] [PubMed]
  6. Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation 119, 587–596 (2009).
    [Crossref] [PubMed]
  7. K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
    [Crossref]
  8. R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
    [Crossref] [PubMed]
  9. F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).
  10. M. Konings, S. Weiss, and C. Bakker, “Catheters and guidewires in interventional MRI: problems and solutions,” MedicaMundi 45, 31–39 (2001).
  11. M. K. Konings, L. W. Bartels, H. F. M. Smits, and C. J. G. Bakker, “Heating around intravascular guidewires by resonating RF waves,” J. Magn. Reson. Imaging 12, 79–85 (2000).
    [Crossref] [PubMed]
  12. A. Alduino and M. Paniccia, “Wiring electronics with light,” Nature Photon. 1, 153–155 (2007).
    [Crossref]
  13. S. Fandrey, S. Weiss, and J. Müller, “A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner,” Magn. Reson. Med. 67, 148–155 (2012).
    [Crossref]
  14. M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
    [Crossref] [PubMed]
  15. S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
    [Crossref]
  16. A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive Micromachined Ultrasonic Transducers: Theory and Technology,” J. Aerospace Eng. 16, 76–84 (2003).
    [Crossref]
  17. J. H. Klootwijk, P. Dirksen, M. Mulder, and E. M. L. Moonen, “Capacitive Micromachine Ultrasound Transducer,” Patent US2011163630 (A1) (2011).
  18. M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
    [Crossref]
  19. K. L. Gammelmark and J. A. Jensen, “Multielement Synthetic Transmit Aperature Imaging Using Temporal Encoding,” IEEE Trans. Med. Imaging 22, 552–563 (2003).
    [Crossref] [PubMed]
  20. I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych, “Synthetic aperture method in ultrasound imaging,” in Ultrasound Imaging, M. Tanabe, ed. (InTech, Rijeka, 2011), chap. 3, pp. 37–56.
  21. M. B. van der Mark, A. van Dusschoten, and M. Pekař, “All-optical power and data transfer in catheters using an efficient LED,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XV, I. Gannot, ed. (SPIE Photonics West, San Francisco, 2015), 9317.
  22. M. B. van der Mark and A. H. van Dusschoten, “An optical probe system,” Patent US2015335231 (A1) (2015).
  23. J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med, Biol. Eng. Comput. 34, 351–353 (1996).
  24. J. A. Jensen, “Ultrasound imaging and its modeling,” in Imaging of Complex Media with Acoustic and Seismic Waves, vol. 84 (Springer, 2002), pp. 135–136.
    [Crossref]
  25. M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 58, 1377–1388 (2011).
    [Crossref]
  26. B. A. J. Angelsen, Ultrasound Imaging: Waves, Signals, and Signal Processing Vol I (Emantec, 2000).
  27. I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.
  28. J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
    [Crossref] [PubMed]
  29. W. C. Black, S. Member, and D. N. Stephens, “CMOS Chip for Invasive Ultrasound Imaging,” IEEE J. Solid-State Circuits 29, 1381–1387 (1994).
    [Crossref]
  30. I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
    [Crossref]
  31. C. T. Leondes, ed., MEMS/NEMS Handbook: Techniques and Applications (SpringerUS, 2007).
  32. P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
    [Crossref] [PubMed]
  33. M. Karaman and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 42, 429–442 (1995).
    [Crossref]

2017 (1)

M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
[Crossref]

2015 (1)

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

2013 (2)

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
[Crossref] [PubMed]

2012 (3)

S. Fandrey, S. Weiss, and J. Müller, “A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner,” Magn. Reson. Med. 67, 148–155 (2012).
[Crossref]

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
[Crossref]

2011 (2)

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 58, 1377–1388 (2011).
[Crossref]

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

2009 (1)

Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation 119, 587–596 (2009).
[Crossref] [PubMed]

2007 (1)

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nature Photon. 1, 153–155 (2007).
[Crossref]

2006 (1)

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

2003 (3)

K. L. Gammelmark and J. A. Jensen, “Multielement Synthetic Transmit Aperature Imaging Using Temporal Encoding,” IEEE Trans. Med. Imaging 22, 552–563 (2003).
[Crossref] [PubMed]

A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive Micromachined Ultrasonic Transducers: Theory and Technology,” J. Aerospace Eng. 16, 76–84 (2003).
[Crossref]

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

2001 (1)

M. Konings, S. Weiss, and C. Bakker, “Catheters and guidewires in interventional MRI: problems and solutions,” MedicaMundi 45, 31–39 (2001).

2000 (1)

M. K. Konings, L. W. Bartels, H. F. M. Smits, and C. J. G. Bakker, “Heating around intravascular guidewires by resonating RF waves,” J. Magn. Reson. Imaging 12, 79–85 (2000).
[Crossref] [PubMed]

1998 (1)

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
[Crossref]

1996 (3)

D. M. Cosgrove and J. F. Sabik, “Minimally invasive approach for aortic valve operations,” Ann. Thorac. Surg. 62, 596–597 (1996).
[Crossref] [PubMed]

J. L. Navia and D. M. Cosgrove, “Minimally invasive mitral valve operations,” Ann. Thorac. Surg. 62, 1542–1544 (1996).
[Crossref] [PubMed]

J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med, Biol. Eng. Comput. 34, 351–353 (1996).

1995 (1)

M. Karaman and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 42, 429–442 (1995).
[Crossref]

1994 (1)

W. C. Black, S. Member, and D. N. Stephens, “CMOS Chip for Invasive Ultrasound Imaging,” IEEE J. Solid-State Circuits 29, 1381–1387 (1994).
[Crossref]

Adigüzel, D.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Alduino, A.

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nature Photon. 1, 153–155 (2007).
[Crossref]

Anagnostopoulos, D.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Andrews, B.

S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
[Crossref]

Angelsen, B. A. J.

B. A. J. Angelsen, Ultrasound Imaging: Waves, Signals, and Signal Processing Vol I (Emantec, 2000).

Atalar, A.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
[Crossref]

Baka, S.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Baker, E.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Bakker, C.

M. Konings, S. Weiss, and C. Bakker, “Catheters and guidewires in interventional MRI: problems and solutions,” MedicaMundi 45, 31–39 (2001).

Bakker, C. J. G.

M. K. Konings, L. W. Bartels, H. F. M. Smits, and C. J. G. Bakker, “Heating around intravascular guidewires by resonating RF waves,” J. Magn. Reson. Imaging 12, 79–85 (2000).
[Crossref] [PubMed]

Baltayiannis, N.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Barbash, I. M.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Barnett, M.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Bartel, T.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Bartels, L. W.

M. K. Konings, L. W. Bartels, H. F. M. Smits, and C. J. G. Bakker, “Heating around intravascular guidewires by resonating RF waves,” J. Magn. Reson. Imaging 12, 79–85 (2000).
[Crossref] [PubMed]

Black, W. C.

W. C. Black, S. Member, and D. N. Stephens, “CMOS Chip for Invasive Ultrasound Imaging,” IEEE J. Solid-State Circuits 29, 1381–1387 (1994).
[Crossref]

Bonaros, N.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Byram, B. C.

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 58, 1377–1388 (2011).
[Crossref]

Cao, Q.

I. Gonzalez, Q. Cao, and Z. Hijazi, “Role of Intracardiac Echocardiography (ICE) in Transcatheter Occlusion of Atrial Septal Defects,” in Atrial Septal Defect, P. S. Rao, ed. (InTech, 2012), pp. 99–118.

Cosgrove, D. M.

D. M. Cosgrove and J. F. Sabik, “Minimally invasive approach for aortic valve operations,” Ann. Thorac. Surg. 62, 596–597 (1996).
[Crossref] [PubMed]

J. L. Navia and D. M. Cosgrove, “Minimally invasive mitral valve operations,” Ann. Thorac. Surg. 62, 1542–1544 (1996).
[Crossref] [PubMed]

Dahl, J. J.

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 58, 1377–1388 (2011).
[Crossref]

de Jong, N.

M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
[Crossref]

Degertekin, F. L.

F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).

Dirksen, P.

J. H. Klootwijk, P. Dirksen, M. Mulder, and E. M. L. Moonen, “Capacitive Micromachine Ultrasound Transducer,” Patent US2011163630 (A1) (2011).

Dittmer, W. U.

M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
[Crossref]

Ergun, A. S.

A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive Micromachined Ultrasonic Transducers: Theory and Technology,” J. Aerospace Eng. 16, 76–84 (2003).
[Crossref]

Fandrey, S.

S. Fandrey, S. Weiss, and J. Müller, “A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner,” Magn. Reson. Med. 67, 148–155 (2012).
[Crossref]

Faranesh, A. Z.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Feuchtner, G.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Frazão, O.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
[Crossref] [PubMed]

Friedrich, G.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Gammelmark, K. L.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

K. L. Gammelmark and J. A. Jensen, “Multielement Synthetic Transmit Aperature Imaging Using Temporal Encoding,” IEEE Trans. Med. Imaging 22, 552–563 (2003).
[Crossref] [PubMed]

Ghovanloo, M.

F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).

Gonzalez, I.

I. Gonzalez, Q. Cao, and Z. Hijazi, “Role of Intracardiac Echocardiography (ICE) in Transcatheter Occlusion of Atrial Septal Defects,” in Atrial Septal Defect, P. S. Rao, ed. (InTech, 2012), pp. 99–118.

Grant, L. P.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Grimm, M.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Halabi, M.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Hansen, M. S.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Hawkes, D. J.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Hegde, S.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Hijazi, Z.

I. Gonzalez, Q. Cao, and Z. Hijazi, “Role of Intracardiac Echocardiography (ICE) in Transcatheter Occlusion of Atrial Septal Defects,” in Atrial Septal Defect, P. S. Rao, ed. (InTech, 2012), pp. 99–118.

Hijazi, Z. M.

Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation 119, 587–596 (2009).
[Crossref] [PubMed]

Hill, D. L. G.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Hofstetter, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Howgate, J.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Ivanisevic, A.

S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
[Crossref]

Jay, L. R.

F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).

Jensen, J. A.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

K. L. Gammelmark and J. A. Jensen, “Multielement Synthetic Transmit Aperature Imaging Using Temporal Encoding,” IEEE Trans. Med. Imaging 22, 552–563 (2003).
[Crossref] [PubMed]

J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med, Biol. Eng. Comput. 34, 351–353 (1996).

J. A. Jensen, “Ultrasound imaging and its modeling,” in Imaging of Complex Media with Acoustic and Seismic Waves, vol. 84 (Springer, 2002), pp. 135–136.
[Crossref]

Jewett, S. A.

S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
[Crossref]

Jin, X.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
[Crossref]

Karaman, M.

M. Karaman and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 42, 429–442 (1995).
[Crossref]

Karavasilis, V.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Karavergou, A.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Katsikogiannis, N.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Keevil, S. F.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Kellman, P.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Khuri-Yakub, B. T.

A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive Micromachined Ultrasonic Transducers: Theory and Technology,” J. Aerospace Eng. 16, 76–84 (2003).
[Crossref]

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
[Crossref]

Kioumis, I.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Klootwijk, J. H.

J. H. Klootwijk, P. Dirksen, M. Mulder, and E. M. L. Moonen, “Capacitive Micromachine Ultrasound Transducer,” Patent US2011163630 (A1) (2011).

Kocaturk, O.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).

Konings, M.

M. Konings, S. Weiss, and C. Bakker, “Catheters and guidewires in interventional MRI: problems and solutions,” MedicaMundi 45, 31–39 (2001).

Konings, M. K.

M. K. Konings, L. W. Bartels, H. F. M. Smits, and C. J. G. Bakker, “Heating around intravascular guidewires by resonating RF waves,” J. Magn. Reson. Imaging 12, 79–85 (2000).
[Crossref] [PubMed]

Ladabaum, I.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
[Crossref]

I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.

Lampaki, S.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Lazaridis, G.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Lederman, R. J.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Lediju, M. A.

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 58, 1377–1388 (2011).
[Crossref]

Lewandowski, M.

I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych, “Synthetic aperture method in ultrasound imaging,” in Ultrasound Imaging, M. Tanabe, ed. (InTech, Rijeka, 2011), chap. 3, pp. 37–56.

Lobo-Ribeiro, A. B.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
[Crossref] [PubMed]

Makowski, M. S.

S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
[Crossref]

Manfra, M. J.

S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
[Crossref]

Member, S.

W. C. Black, S. Member, and D. N. Stephens, “CMOS Chip for Invasive Ultrasound Imaging,” IEEE J. Solid-State Circuits 29, 1381–1387 (1994).
[Crossref]

Michail, C.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Mihajlovic, N.

M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
[Crossref]

Miquel, M. E.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Moonen, E. M. L.

J. H. Klootwijk, P. Dirksen, M. Mulder, and E. M. L. Moonen, “Capacitive Micromachine Ultrasound Transducer,” Patent US2011163630 (A1) (2011).

Mould, J.

I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.

Mpoukovinas, I.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Mulder, M.

J. H. Klootwijk, P. Dirksen, M. Mulder, and E. M. L. Moonen, “Capacitive Micromachine Ultrasound Transducer,” Patent US2011163630 (A1) (2011).

Müller, J.

S. Fandrey, S. Weiss, and J. Müller, “A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner,” Magn. Reson. Med. 67, 148–155 (2012).
[Crossref]

Müller, L.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Müller, S.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Muthurangu, V.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Navia, J. L.

J. L. Navia and D. M. Cosgrove, “Minimally invasive mitral valve operations,” Ann. Thorac. Surg. 62, 1542–1544 (1996).
[Crossref] [PubMed]

Nikolov, S. I.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Nowicki, A.

I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych, “Synthetic aperture method in ultrasound imaging,” in Ultrasound Imaging, M. Tanabe, ed. (InTech, Rijeka, 2011), chap. 3, pp. 37–56.

O’Donnell, M.

M. Karaman and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 42, 429–442 (1995).
[Crossref]

Paniccia, M.

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nature Photon. 1, 153–155 (2007).
[Crossref]

Papaiwannou, A.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Pedersen, M. H.

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Pedross, F.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Pekar, M.

M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
[Crossref]

M. B. van der Mark, A. van Dusschoten, and M. Pekař, “All-optical power and data transfer in catheters using an efficient LED,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XV, I. Gannot, ed. (SPIE Photonics West, San Francisco, 2015), 9317.

Pitsiou, G.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Rapti, A.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Rashid, M. W.

F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).

Ratnayaka, K.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Razavi, R.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Reynolds, P.

I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.

Rhode, K.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Roriz, P.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
[Crossref] [PubMed]

Sabik, J. F.

D. M. Cosgrove and J. F. Sabik, “Minimally invasive approach for aortic valve operations,” Ann. Thorac. Surg. 62, 596–597 (1996).
[Crossref] [PubMed]

Sachsenhauser, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Sahn, D. J.

Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation 119, 587–596 (2009).
[Crossref] [PubMed]

Santos, J. L.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
[Crossref] [PubMed]

Schenke, W. H.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Schmid, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Schoell, S.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Sharp, I. D.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Shivkumar, K.

Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation 119, 587–596 (2009).
[Crossref] [PubMed]

Simões, J. A.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
[Crossref] [PubMed]

Smits, H. F. M.

M. K. Konings, L. W. Bartels, H. F. M. Smits, and C. J. G. Bakker, “Heating around intravascular guidewires by resonating RF waves,” J. Magn. Reson. Imaging 12, 79–85 (2000).
[Crossref] [PubMed]

Soh, H. T.

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
[Crossref]

Stephens, D. N.

W. C. Black, S. Member, and D. N. Stephens, “CMOS Chip for Invasive Ultrasound Imaging,” IEEE J. Solid-State Circuits 29, 1381–1387 (1994).
[Crossref]

Stine, A. M.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Stutzmann, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Tasinkevych, Y.

I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych, “Synthetic aperture method in ultrasound imaging,” in Ultrasound Imaging, M. Tanabe, ed. (InTech, Rijeka, 2011), chap. 3, pp. 37–56.

Tekes, C.

F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).

Thalhammer, S.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Trahey, G. E.

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 58, 1377–1388 (2011).
[Crossref]

Trakada, G.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Trots, I.

I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych, “Synthetic aperture method in ultrasound imaging,” in Ultrasound Imaging, M. Tanabe, ed. (InTech, Rijeka, 2011), chap. 3, pp. 37–56.

Tsakiridis, K.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

van der Mark, M. B.

M. B. van der Mark, A. van Dusschoten, and M. Pekař, “All-optical power and data transfer in catheters using an efficient LED,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XV, I. Gannot, ed. (SPIE Photonics West, San Francisco, 2015), 9317.

M. B. van der Mark and A. H. van Dusschoten, “An optical probe system,” Patent US2015335231 (A1) (2015).

van Dusschoten, A.

M. B. van der Mark, A. van Dusschoten, and M. Pekař, “All-optical power and data transfer in catheters using an efficient LED,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XV, I. Gannot, ed. (SPIE Photonics West, San Francisco, 2015), 9317.

van Dusschoten, A. H.

M. B. van der Mark and A. H. van Dusschoten, “An optical probe system,” Patent US2015335231 (A1) (2015).

van Soest, G.

M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
[Crossref]

Van Vaals, J.

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Velik-Salchner, C.

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

Wagner, P.

I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.

Weiss, S.

S. Fandrey, S. Weiss, and J. Müller, “A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner,” Magn. Reson. Med. 67, 148–155 (2012).
[Crossref]

M. Konings, S. Weiss, and C. Bakker, “Catheters and guidewires in interventional MRI: problems and solutions,” MedicaMundi 45, 31–39 (2001).

Wojcik, G.

I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.

Wright, V. J.

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

Yaralioglu, G. G.

A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive Micromachined Ultrasonic Transducers: Theory and Technology,” J. Aerospace Eng. 16, 76–84 (2003).
[Crossref]

Zanelli, C.

I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.

Zarogoulidis, K.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Zarogoulidis, P.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Zissimopoulos, A.

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Acta Biomaterialia (1)

S. A. Jewett, M. S. Makowski, B. Andrews, M. J. Manfra, and A. Ivanisevic, “Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides,” Acta Biomaterialia 8, 728–733 (2012).
[Crossref]

Ann. Thorac. Surg. (2)

D. M. Cosgrove and J. F. Sabik, “Minimally invasive approach for aortic valve operations,” Ann. Thorac. Surg. 62, 596–597 (1996).
[Crossref] [PubMed]

J. L. Navia and D. M. Cosgrove, “Minimally invasive mitral valve operations,” Ann. Thorac. Surg. 62, 1542–1544 (1996).
[Crossref] [PubMed]

Ann. Transl. Med. (1)

N. Baltayiannis, C. Michail, G. Lazaridis, D. Anagnostopoulos, S. Baka, I. Mpoukovinas, V. Karavasilis, S. Lampaki, A. Papaiwannou, A. Karavergou, I. Kioumis, G. Pitsiou, N. Katsikogiannis, K. Tsakiridis, A. Rapti, G. Trakada, A. Zissimopoulos, K. Zarogoulidis, and P. Zarogoulidis, and Others, “Minimally invasive procedures,” Ann. Transl. Med. 3, 55 (2015).
[PubMed]

Biochem. Biophys. Res. Commun. (1)

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigüzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Circulation (1)

Z. M. Hijazi, K. Shivkumar, and D. J. Sahn, “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization,” Circulation 119, 587–596 (2009).
[Crossref] [PubMed]

Eur. Heart J. (1)

K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, O. Kocaturk, and R. J. Lederman, “Real-time MRI-guided right heart catheterization in adults using passive catheters,” Eur. Heart J. 34, 380–388 (2013).
[Crossref]

IEEE J. Solid-State Circuits (1)

W. C. Black, S. Member, and D. N. Stephens, “CMOS Chip for Invasive Ultrasound Imaging,” IEEE J. Solid-State Circuits 29, 1381–1387 (1994).
[Crossref]

IEEE Trans. Med. Imaging (1)

K. L. Gammelmark and J. A. Jensen, “Multielement Synthetic Transmit Aperature Imaging Using Temporal Encoding,” IEEE Trans. Med. Imaging 22, 552–563 (2003).
[Crossref] [PubMed]

IEEE Trans. Ultrason., Ferroelect., Freq. Control (3)

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 58, 1377–1388 (2011).
[Crossref]

I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 45, 678–690 (1998).
[Crossref]

M. Karaman and M. O’Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason., Ferroelect., Freq. Control 42, 429–442 (1995).
[Crossref]

J. Aerospace Eng. (1)

A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive Micromachined Ultrasonic Transducers: Theory and Technology,” J. Aerospace Eng. 16, 76–84 (2003).
[Crossref]

J. Am. Soc. Echocardiogr. (1)

T. Bartel, N. Bonaros, L. Müller, G. Friedrich, M. Grimm, C. Velik-Salchner, G. Feuchtner, F. Pedross, and S. Müller, “Intracardiac echocardiography: a new guiding tool for transcatheter aortic valve replacement,” J. Am. Soc. Echocardiogr. 24, 966–975 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18, 50903 (2013).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

M. K. Konings, L. W. Bartels, H. F. M. Smits, and C. J. G. Bakker, “Heating around intravascular guidewires by resonating RF waves,” J. Magn. Reson. Imaging 12, 79–85 (2000).
[Crossref] [PubMed]

Lancet (1)

R. Razavi, D. L. G. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. Van Vaals, D. J. Hawkes, and E. Baker, “Cardiac catheterisation guided by MRI in children and adults with congenital heart disease,” Lancet 362, 1877–1882 (2003).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

S. Fandrey, S. Weiss, and J. Müller, “A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner,” Magn. Reson. Med. 67, 148–155 (2012).
[Crossref]

Med, Biol. Eng. Comput. (1)

J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med, Biol. Eng. Comput. 34, 351–353 (1996).

MedicaMundi (1)

M. Konings, S. Weiss, and C. Bakker, “Catheters and guidewires in interventional MRI: problems and solutions,” MedicaMundi 45, 31–39 (2001).

Nature Photon. (1)

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nature Photon. 1, 153–155 (2007).
[Crossref]

Ultrasonics (2)

M. Pekař, W. U. Dittmer, N. Mihajlović, G. van Soest, and N. de Jong, “Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer,” Ultrasonics 74, 144–152 (2017).
[Crossref]

J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasonics 44, e5–e15 (2006).
[Crossref] [PubMed]

Other (10)

C. T. Leondes, ed., MEMS/NEMS Handbook: Techniques and Applications (SpringerUS, 2007).

J. A. Jensen, “Ultrasound imaging and its modeling,” in Imaging of Complex Media with Acoustic and Seismic Waves, vol. 84 (Springer, 2002), pp. 135–136.
[Crossref]

B. A. J. Angelsen, Ultrasound Imaging: Waves, Signals, and Signal Processing Vol I (Emantec, 2000).

I. Ladabaum, P. Wagner, C. Zanelli, J. Mould, P. Reynolds, and G. Wojcik, “Silicon substrate ringing in microfabricated ultrasonic transducers,” in Proceedings - IEEE Ultrasonics Symposium (IEEE, 2000), pp. 943–946.

I. Trots, A. Nowicki, M. Lewandowski, and Y. Tasinkevych, “Synthetic aperture method in ultrasound imaging,” in Ultrasound Imaging, M. Tanabe, ed. (InTech, Rijeka, 2011), chap. 3, pp. 37–56.

M. B. van der Mark, A. van Dusschoten, and M. Pekař, “All-optical power and data transfer in catheters using an efficient LED,” in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XV, I. Gannot, ed. (SPIE Photonics West, San Francisco, 2015), 9317.

M. B. van der Mark and A. H. van Dusschoten, “An optical probe system,” Patent US2015335231 (A1) (2015).

J. H. Klootwijk, P. Dirksen, M. Mulder, and E. M. L. Moonen, “Capacitive Micromachine Ultrasound Transducer,” Patent US2011163630 (A1) (2011).

F. L. Degertekin, C. Tekes, L. R. Jay, O. Kocaturk, M. W. Rashid, and M. Ghovanloo, “MRI Compatible 3-D Intracardiac Echography Catheter and System,” Patent WO2015048321 (A1) (2015).

I. Gonzalez, Q. Cao, and Z. Hijazi, “Role of Intracardiac Echocardiography (ICE) in Transcatheter Occlusion of Atrial Septal Defects,” in Atrial Septal Defect, P. S. Rao, ed. (InTech, 2012), pp. 99–118.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematics of the opto-electrical ultrasound imaging system. Electrical connections are shown as solid arrows and the optical connections are shown as dashed arrows. For comparison of system performance, the optical connections can be replaced by electrical wires. The labelled numbers correspond to the components shown in a photograph in Fig. 2.

Fig. 2
Fig. 2

Photograph of the opto-electrical ultrasound imaging system. The labelled numbers correspond to the items shown in a schematic drawing in Fig. 1.

Fig. 3
Fig. 3

Schematic diagram of the ASIC functionality. The ASIC consists of 16 high voltage transmitters (TX), 16 receivers (RX), two multiplexers (M) controlled by the transmit (TX) and receive (RX) control signals, and a transmit-receive (TX/RX) switch which connects the ASIC to the CMUT array.

Fig. 4
Fig. 4

VCSEL characteristics: the current-voltage (solid) and current-power (dashed) curves.

Fig. 5
Fig. 5

Electronic layout of the optical transmitter connected to the optical low voltage power supply.

Fig. 6
Fig. 6

Electronic layout of the optical receiver.

Fig. 7
Fig. 7

Optical signal link bandwidth.

Fig. 8
Fig. 8

Typical pulse-echo transducer array characteristics.

Fig. 9
Fig. 9

Synthetic aperture images of (a, c, e) a wire phantom and (b, d, f) a cyst phantom shown at a dynamic range of 40 dB. The white (a, c, e) rectangles and (b, d, f) circles show the region of interest inside (solid) and outside (dashed) the phantom feature used for the calculation of the image characteristics (CNR, SNR).

Tables (3)

Tables Icon

Table 1 Average electrical power consumption by electronics.

Tables Icon

Table 2 Optical power link efficiency.

Tables Icon

Table 3 Image characteristics

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f ( Θ ) = sin ( π d / λ sin Θ ) π d / λ sin Θ cos Θ ,
CNR = | μ i μ o | σ i 2 + σ o 2 ,
SNR = 20 × log 10 ( μ i σ o ) .