Abstract

We fabricate low-loss single-mode (SM) polymer optical waveguides using a photomask-free simple technique named the Mosquito method. The insertion losses of a 5-cm long SM polymer waveguide fabricated are 2.52 dB and 4.03 dB at 1310- and 1550-nm wavelengths, respectively. The coupling loss between a single-mode fiber and the waveguide is as low as 0.5 dB including the Fresnel reflection. The 0.5-dB misalignment tolerance in the radial direction is ± 2.0 μm at 1550 nm. The Mosquito method is promising for fabricating SM polymer optical waveguides compatible with silicon photonics chips.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method

Ryota Kinoshita, Daisuke Suganuma, and Takaaki Ishigure
Opt. Express 22(7) 8426-8437 (2014)

Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the Mosquito method

Daisuke Suganuma and Takaaki Ishigure
Opt. Express 23(2) 1585-1593 (2015)

Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [Crossref]
  2. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
    [Crossref] [PubMed]
  3. S. Takenobu and Y. Kaida, “Single-mode polymer optical interconnects for si photonics with heat resistant and low loss at 1310/1550nm,” in Proceedings of European Conf. Exhibition Optical Communication (2012), paper P2.20.
    [Crossref]
  4. J. Kobayashi, T. Matsuura, S. Sasaki, and T. Maruno, “Single-mode optical waveguides fabricated from fluorinated polyimides,” Appl. Opt. 37(6), 1032–1037 (1998).
    [Crossref] [PubMed]
  5. M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25(5), 1284–1289 (2007).
    [Crossref]
  6. M. U. Khan, J. Justice, J. Petäjä, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography,” Opt. Express 23(11), 14630–14639 (2015).
    [Crossref] [PubMed]
  7. E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
    [Crossref]
  8. H. H. Duc Nguyen, U. Hollenbach, U. Ostrzinski, K. Pfeiffer, S. Hengsbach, and J. Mohr, “Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography,” Appl. Opt. 55(8), 1906–1912 (2016).
    [Crossref] [PubMed]
  9. K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
    [Crossref]
  10. R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
    [Crossref] [PubMed]
  11. S. Yoshida, D. Suganuma, and T. Ishigure, “Photomask free fabrication of single-mode polymer optical waveguide using the Mosquito method,” in Proceedings of IEEE Photonics Conference (2014).
    [Crossref]
  12. K. Yasuhara, S. Yoshida, F. Yu, and T. Ishigure, “Low-loss circular core single-mode polymer optical waveguide compatible with Si photonics for off-chip interconnects,” in Proceedings of 2016 IEEE Optical Interconnects Conference (2016).
    [Crossref]
  13. H. Nawata, “Organic-inorganic hybrid material for onboard optical interconnects and its application in optical coupling,” in Proceedings of 2013 IEEE CPMT Symposium Japan (2012).

2016 (1)

2015 (2)

2014 (2)

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref] [PubMed]

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

2013 (1)

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

2007 (1)

2006 (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

1998 (1)

Amb, C. M.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Boersma, A.

Boisen, A.

Bona, G.-L.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Broennimann, R.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Corbett, B.

Dangel, R.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Duc Nguyen, H. H.

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

Hengsbach, S.

Hofrichter, J.

Hollenbach, U.

Horst, F.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Hubner, J.

Ishigure, T.

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref] [PubMed]

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

S. Yoshida, D. Suganuma, and T. Ishigure, “Photomask free fabrication of single-mode polymer optical waveguide using the Mosquito method,” in Proceedings of IEEE Photonics Conference (2014).
[Crossref]

K. Yasuhara, S. Yoshida, F. Yu, and T. Ishigure, “Low-loss circular core single-mode polymer optical waveguide compatible with Si photonics for off-chip interconnects,” in Proceedings of 2016 IEEE Optical Interconnects Conference (2016).
[Crossref]

Jubin, D.

Justice, J.

Kaida, Y.

S. Takenobu and Y. Kaida, “Single-mode polymer optical interconnects for si photonics with heat resistant and low loss at 1310/1550nm,” in Proceedings of European Conf. Exhibition Optical Communication (2012), paper P2.20.
[Crossref]

Karppinen, M.

Khan, M. U.

Kinoshita, R.

Kobayashi, J.

Korhonen, T.

La Porta, A.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Maruno, T.

Matsuura, T.

Meier, N.

Mohr, J.

Nawata, H.

H. Nawata, “Organic-inorganic hybrid material for onboard optical interconnects and its application in optical coupling,” in Proceedings of 2013 IEEE CPMT Symposium Japan (2012).

Nordstrom, M.

Offrein, B. J.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Ostrzinski, U.

Petäjä, J.

Pfeiffer, K.

Sasaki, S.

Scholder, O.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Sennhauser, U.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Snow, S. A.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Soganci, I. M.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Soma, K.

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

Suganuma, D.

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref] [PubMed]

S. Yoshida, D. Suganuma, and T. Ishigure, “Photomask free fabrication of single-mode polymer optical waveguide using the Mosquito method,” in Proceedings of IEEE Photonics Conference (2014).
[Crossref]

Swatowski, B. W.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Takenobu, S.

S. Takenobu and Y. Kaida, “Single-mode polymer optical interconnects for si photonics with heat resistant and low loss at 1310/1550nm,” in Proceedings of European Conf. Exhibition Optical Communication (2012), paper P2.20.
[Crossref]

Weiss, J.

Wiegersma, S.

Yasuhara, K.

K. Yasuhara, S. Yoshida, F. Yu, and T. Ishigure, “Low-loss circular core single-mode polymer optical waveguide compatible with Si photonics for off-chip interconnects,” in Proceedings of 2016 IEEE Optical Interconnects Conference (2016).
[Crossref]

Yoshida, S.

K. Yasuhara, S. Yoshida, F. Yu, and T. Ishigure, “Low-loss circular core single-mode polymer optical waveguide compatible with Si photonics for off-chip interconnects,” in Proceedings of 2016 IEEE Optical Interconnects Conference (2016).
[Crossref]

S. Yoshida, D. Suganuma, and T. Ishigure, “Photomask free fabrication of single-mode polymer optical waveguide using the Mosquito method,” in Proceedings of IEEE Photonics Conference (2014).
[Crossref]

Young, J. K.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Yu, F.

K. Yasuhara, S. Yoshida, F. Yu, and T. Ishigure, “Low-loss circular core single-mode polymer optical waveguide compatible with Si photonics for off-chip interconnects,” in Proceedings of 2016 IEEE Optical Interconnects Conference (2016).
[Crossref]

Zauner, D. A.

Zgraggen, E.

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

K. Soma and T. Ishigure, “Fabrication of a graded-Index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600310 (2013).
[Crossref]

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

J. Lightwave Technol. (2)

E. Zgraggen, I. M. Soganci, F. Horst, A. La Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser direct writing of single-mode polysiloxane optical waveguides and devices,” J. Lightwave Technol. 32(17), 3016–3042 (2014).
[Crossref]

M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25(5), 1284–1289 (2007).
[Crossref]

Opt. Express (3)

Other (4)

S. Yoshida, D. Suganuma, and T. Ishigure, “Photomask free fabrication of single-mode polymer optical waveguide using the Mosquito method,” in Proceedings of IEEE Photonics Conference (2014).
[Crossref]

K. Yasuhara, S. Yoshida, F. Yu, and T. Ishigure, “Low-loss circular core single-mode polymer optical waveguide compatible with Si photonics for off-chip interconnects,” in Proceedings of 2016 IEEE Optical Interconnects Conference (2016).
[Crossref]

H. Nawata, “Organic-inorganic hybrid material for onboard optical interconnects and its application in optical coupling,” in Proceedings of 2013 IEEE CPMT Symposium Japan (2012).

S. Takenobu and Y. Kaida, “Single-mode polymer optical interconnects for si photonics with heat resistant and low loss at 1310/1550nm,” in Proceedings of European Conf. Exhibition Optical Communication (2012), paper P2.20.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Procedure of the waveguide fabrication in the Mosquito method.

Fig. 2
Fig. 2

Propagation loss spectrum of a SUNCONNECT® based multimode polymer optical waveguide compared to a conventional siloxane polymer based waveguide [9].

Fig. 3
Fig. 3

The calculated single-mode condition for cores with GI profiles at 1310 nm and 1550 nm.

Fig. 4
Fig. 4

Relationship between the core diameter and the needle-scan velocity (All the marks are the experimentally measured data).

Fig. 5
Fig. 5

(a) A cross-section of the fabricated SM waveguide and (b) a magnified image of one channel.

Fig. 6
Fig. 6

Over-view of the (a) 50-, (b) 40-, (c) 30-, and (d) 20-μm pitch SM waveguides.

Fig. 7
Fig. 7

Cross-section of the (a) 50-, (b) 40-, (c) 30-, and (d) 20-μm pitch SM waveguides.

Fig. 8
Fig. 8

Measured NFPs from (a) an SMF and (b) the fabricated SM waveguide.

Fig. 9
Fig. 9

Normalized output intensity profiles in the radial direction from (a) an SMF and (b) the fabricated SM waveguide.

Fig. 10
Fig. 10

Propagation loss evaluated by cut-back method (a) at 1310 nm and (b) at 1550 nm.

Fig. 11
Fig. 11

Measurement setup for the insertion loss and coupling loss.

Fig. 12
Fig. 12

Insertion loss and coupling loss of the 5.0-cm long SM waveguide.

Fig. 13
Fig. 13

Measurement setup for evaluating misalignment tolerance.

Fig. 14
Fig. 14

Misalignment tolerance result.

Fig. 15
Fig. 15

Output intensity profile from the SM waveguide coupled to the optical splitter.

Fig. 16
Fig. 16

Interchannel crosstalk of the fabricated 5.0-cm long SM waveguides.

Tables (1)

Tables Icon

Table 1 Mode Field Diameter Calculated at 1310 nm and 1550 nm.

Metrics