Abstract

We demonstrate the use of a dual-mode detector for determining the internal quantum deficiency of a silicon photodiode without the use of an external reference. This is achieved by combining two different principles for measuring optical power in one device, where the photodiode is used as absorber for both thermal and photon detection. Thermal detection is obtained by the same principle as for an electrical substitution radiometer (ESR), with a type A measurement uncertainty of 0.34 % in unstabilized room temperature. The optical power measured in thermal mode was around 3 % ± 0.5 % higher than what was measured in photocurrent mode. Heat transfer simulations revealed a difference of up to 2.2 % between optical and electrical heating, and based on these simulations we give recommendations for improvements of the detector thermal design.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
National Institute of Standards and Technology high-accuracy cryogenic radiometer

T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, and A. C. Parr
Appl. Opt. 35(7) 1056-1068 (1996)

Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers

Peter V. Foukal, C. Hoyt, H. Kochling, and P. Miller
Appl. Opt. 29(7) 988-993 (1990)

References

  • View by:
  • |
  • |
  • |

  1. S. Kueck, ”The Qu-Candela project,” http://www.quantumcandela.org .
  2. CCPR Working Group on Strategic Planning, ”Mise en pratique for the definition of the candela and associated derived units for photometric and radiometric quantities in the International System of Units (SI),” http://www.bipm.org/en/publications/mises-en-pratique .
  3. J. E. Martin, N. P. Fox, and P. J. Key, ”A Cryogenic Radiometer for Absolute Radiometric Measurements,” Metrologia 21(3), 147–155 (1985).
    [Crossref]
  4. J. Geist, G. Brida, and M. L. Rastello, ”Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40(1), S132–S135 (2003).
    [Crossref]
  5. M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
    [Crossref]
  6. I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
    [Crossref]
  7. J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
    [Crossref]
  8. M. White, J. Gran, N. Tomlin, and J. Lehman, ”A detector combining quantum and thermal primary radiometric standards in the same artefact,” Metrologia 51(6), S245–S251 (2014).
    [Crossref]
  9. E.F. Zalewski and C.R. Duda, ”Silicon photodiode device with 100 % external quantum efficiency,” Applied Optics 22(18), 2867–2873 (1983).
    [Crossref]
  10. M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reducing photodiode reflectance by Brewster-angle operation,” Metrologia 45(1), 11–15 (2008).
    [Crossref]
  11. M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reflectance calculations for a predictable quantum efficient detector,” Metrologia 46(4), S151–S154 (2009).
    [Crossref]
  12. A.C. Parr, R.U. Datla, and J.L. Gardner, ”Optical Radiometry,” in Experimental Methods in the Physical Sciences, Vol. 41 (Elsevier, 2005).
  13. C. K. Tang, J. Gran, I. Müller, U. Linke, and L. Werner, ”Measured and 3D modelled quantum efficiency of an oxide-charge induced junction photodiode at room temperature,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (2015), pp. 177–178.
  14. R. Goebel and M. Stock, ”Report on the key comparison CCPR-K2.b of spectral responsivity measurements,” http://kcdb.bipm.org/AppendixB/appbresults/ccpr-k2.b/ccpr-k2.b_final_report.pdf .

2014 (1)

M. White, J. Gran, N. Tomlin, and J. Lehman, ”A detector combining quantum and thermal primary radiometric standards in the same artefact,” Metrologia 51(6), S245–S251 (2014).
[Crossref]

2013 (2)

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

2012 (1)

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

2009 (1)

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reflectance calculations for a predictable quantum efficient detector,” Metrologia 46(4), S151–S154 (2009).
[Crossref]

2008 (1)

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reducing photodiode reflectance by Brewster-angle operation,” Metrologia 45(1), 11–15 (2008).
[Crossref]

2003 (1)

J. Geist, G. Brida, and M. L. Rastello, ”Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40(1), S132–S135 (2003).
[Crossref]

1985 (1)

J. E. Martin, N. P. Fox, and P. J. Key, ”A Cryogenic Radiometer for Absolute Radiometric Measurements,” Metrologia 21(3), 147–155 (1985).
[Crossref]

1983 (1)

E.F. Zalewski and C.R. Duda, ”Silicon photodiode device with 100 % external quantum efficiency,” Applied Optics 22(18), 2867–2873 (1983).
[Crossref]

Brida, G.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

J. Geist, G. Brida, and M. L. Rastello, ”Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40(1), S132–S135 (2003).
[Crossref]

Datla, R.U.

A.C. Parr, R.U. Datla, and J.L. Gardner, ”Optical Radiometry,” in Experimental Methods in the Physical Sciences, Vol. 41 (Elsevier, 2005).

Duda, C.R.

E.F. Zalewski and C.R. Duda, ”Silicon photodiode device with 100 % external quantum efficiency,” Applied Optics 22(18), 2867–2873 (1983).
[Crossref]

Fox, N. P.

J. E. Martin, N. P. Fox, and P. J. Key, ”A Cryogenic Radiometer for Absolute Radiometric Measurements,” Metrologia 21(3), 147–155 (1985).
[Crossref]

Gardner, J.L.

A.C. Parr, R.U. Datla, and J.L. Gardner, ”Optical Radiometry,” in Experimental Methods in the Physical Sciences, Vol. 41 (Elsevier, 2005).

Geist, J.

J. Geist, G. Brida, and M. L. Rastello, ”Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40(1), S132–S135 (2003).
[Crossref]

Goebel, R.

R. Goebel and M. Stock, ”Report on the key comparison CCPR-K2.b of spectral responsivity measurements,” http://kcdb.bipm.org/AppendixB/appbresults/ccpr-k2.b/ccpr-k2.b_final_report.pdf .

Gran, J.

M. White, J. Gran, N. Tomlin, and J. Lehman, ”A detector combining quantum and thermal primary radiometric standards in the same artefact,” Metrologia 51(6), S245–S251 (2014).
[Crossref]

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

C. K. Tang, J. Gran, I. Müller, U. Linke, and L. Werner, ”Measured and 3D modelled quantum efficiency of an oxide-charge induced junction photodiode at room temperature,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (2015), pp. 177–178.

Ikonen, E.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reflectance calculations for a predictable quantum efficient detector,” Metrologia 46(4), S151–S154 (2009).
[Crossref]

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reducing photodiode reflectance by Brewster-angle operation,” Metrologia 45(1), 11–15 (2008).
[Crossref]

Johannsen, U.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

Key, P. J.

J. E. Martin, N. P. Fox, and P. J. Key, ”A Cryogenic Radiometer for Absolute Radiometric Measurements,” Metrologia 21(3), 147–155 (1985).
[Crossref]

Kübarsepp, T.

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

Lehman, J.

M. White, J. Gran, N. Tomlin, and J. Lehman, ”A detector combining quantum and thermal primary radiometric standards in the same artefact,” Metrologia 51(6), S245–S251 (2014).
[Crossref]

Linke, U.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

C. K. Tang, J. Gran, I. Müller, U. Linke, and L. Werner, ”Measured and 3D modelled quantum efficiency of an oxide-charge induced junction photodiode at room temperature,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (2015), pp. 177–178.

Manoocheri, F.

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reflectance calculations for a predictable quantum efficient detector,” Metrologia 46(4), S151–S154 (2009).
[Crossref]

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reducing photodiode reflectance by Brewster-angle operation,” Metrologia 45(1), 11–15 (2008).
[Crossref]

Martin, J. E.

J. E. Martin, N. P. Fox, and P. J. Key, ”A Cryogenic Radiometer for Absolute Radiometric Measurements,” Metrologia 21(3), 147–155 (1985).
[Crossref]

Merimaa, M.

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

Müller, I.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

C. K. Tang, J. Gran, I. Müller, U. Linke, and L. Werner, ”Measured and 3D modelled quantum efficiency of an oxide-charge induced junction photodiode at room temperature,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (2015), pp. 177–178.

Parr, A.C.

A.C. Parr, R.U. Datla, and J.L. Gardner, ”Optical Radiometry,” in Experimental Methods in the Physical Sciences, Vol. 41 (Elsevier, 2005).

Porrovecchio, G.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

Rastello, M. L.

J. Geist, G. Brida, and M. L. Rastello, ”Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40(1), S132–S135 (2003).
[Crossref]

Rastello, M.L.

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

Sildoja, M.

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reflectance calculations for a predictable quantum efficient detector,” Metrologia 46(4), S151–S154 (2009).
[Crossref]

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reducing photodiode reflectance by Brewster-angle operation,” Metrologia 45(1), 11–15 (2008).
[Crossref]

Smîd, M.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

Socaciu-Siebert, L.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

Stock, M.

R. Goebel and M. Stock, ”Report on the key comparison CCPR-K2.b of spectral responsivity measurements,” http://kcdb.bipm.org/AppendixB/appbresults/ccpr-k2.b/ccpr-k2.b_final_report.pdf .

Tang, C. K.

C. K. Tang, J. Gran, I. Müller, U. Linke, and L. Werner, ”Measured and 3D modelled quantum efficiency of an oxide-charge induced junction photodiode at room temperature,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (2015), pp. 177–178.

Tomlin, N.

M. White, J. Gran, N. Tomlin, and J. Lehman, ”A detector combining quantum and thermal primary radiometric standards in the same artefact,” Metrologia 51(6), S245–S251 (2014).
[Crossref]

Werner, L.

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

C. K. Tang, J. Gran, I. Müller, U. Linke, and L. Werner, ”Measured and 3D modelled quantum efficiency of an oxide-charge induced junction photodiode at room temperature,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (2015), pp. 177–178.

White, M.

M. White, J. Gran, N. Tomlin, and J. Lehman, ”A detector combining quantum and thermal primary radiometric standards in the same artefact,” Metrologia 51(6), S245–S251 (2014).
[Crossref]

Zalewski, E.F.

E.F. Zalewski and C.R. Duda, ”Silicon photodiode device with 100 % external quantum efficiency,” Applied Optics 22(18), 2867–2873 (1983).
[Crossref]

Applied Optics (1)

E.F. Zalewski and C.R. Duda, ”Silicon photodiode device with 100 % external quantum efficiency,” Applied Optics 22(18), 2867–2873 (1983).
[Crossref]

Metrologia (8)

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reducing photodiode reflectance by Brewster-angle operation,” Metrologia 45(1), 11–15 (2008).
[Crossref]

M. Sildoja, F. Manoocheri, and E. Ikonen, ”Reflectance calculations for a predictable quantum efficient detector,” Metrologia 46(4), S151–S154 (2009).
[Crossref]

J. E. Martin, N. P. Fox, and P. J. Key, ”A Cryogenic Radiometer for Absolute Radiometric Measurements,” Metrologia 21(3), 147–155 (1985).
[Crossref]

J. Geist, G. Brida, and M. L. Rastello, ”Prospects for improving the accuracy of silicon photodiode self-calibration with custom cryogenic photodiodes,” Metrologia 40(1), S132–S135 (2003).
[Crossref]

M. Sildoja, F. Manoocheri, M. Merimaa, E. Ikonen, I. Müller, L. Werner, J. Gran, T. Kübarsepp, M. Smîd, and M.L. Rastello, ”Predictable quantum efficient detector: I. Photodiodes and predicted responsivity,” Metrologia 50(4), 385–394 (2013).
[Crossref]

I. Müller, U. Johannsen, U. Linke, L. Socaciu-Siebert, M. Smîd, G. Porrovecchio, M. Sildoja, F. Manoocheri, E. Ikonen, J. Gran, T. Kübarsepp, G. Brida, and L. Werner, ”Predictable quantum efficient detector: II. Characterization and confirmed responsivity,” Metrologia 50(4), 395–401 (2013).
[Crossref]

J. Gran, T. Kübarsepp, M. Sildoja, F. Manoocheri, E. Ikonen, and I. Müller, ”Simulations of a predictable quantum efficient detector with PC1D,” Metrologia 49(2), S130–S134 (2012).
[Crossref]

M. White, J. Gran, N. Tomlin, and J. Lehman, ”A detector combining quantum and thermal primary radiometric standards in the same artefact,” Metrologia 51(6), S245–S251 (2014).
[Crossref]

Other (5)

A.C. Parr, R.U. Datla, and J.L. Gardner, ”Optical Radiometry,” in Experimental Methods in the Physical Sciences, Vol. 41 (Elsevier, 2005).

C. K. Tang, J. Gran, I. Müller, U. Linke, and L. Werner, ”Measured and 3D modelled quantum efficiency of an oxide-charge induced junction photodiode at room temperature,” in Proceedings of International Conference on Numerical Simulation of Optoelectronic Devices (2015), pp. 177–178.

R. Goebel and M. Stock, ”Report on the key comparison CCPR-K2.b of spectral responsivity measurements,” http://kcdb.bipm.org/AppendixB/appbresults/ccpr-k2.b/ccpr-k2.b_final_report.pdf .

S. Kueck, ”The Qu-Candela project,” http://www.quantumcandela.org .

CCPR Working Group on Strategic Planning, ”Mise en pratique for the definition of the candela and associated derived units for photometric and radiometric quantities in the International System of Units (SI),” http://www.bipm.org/en/publications/mises-en-pratique .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Photodiode with carrier. (b) Schematic showing a cross-section of the photodiode and PLA/PCB heat link.

Fig. 2
Fig. 2

The two modes for measuring optical power with the dual-mode detector. (a) Photocurrent mode. Incoming light is converted to a photocurrent, iphoto. (b) Thermal mode. Incoming light is converted to heat, followed by electrical substitution to relate heat to optical power.

Fig. 3
Fig. 3

Top view of photodiode, illustrating heating profiles for (a) optical heating and (b) electrical heating. During optical heating, the heat is generated where the beam is absorbed in the substrate, whereas during electrical heating, the heat is dissipated along the edges of the photodiode and spreads towards the center.

Fig. 4
Fig. 4

Two cycles of the thermal mode measurement, with optical heating and electrical heating of two different power values.

Fig. 5
Fig. 5

Optical power from thermal mode, PT, for nine cycles (blue asterisk), and the average over these nine cycles (blue solid line). The same result, when adjusted for the non-equivalence between optical and electrical heating, is shown as a gray dashed-dotted line. The optical power from photocurrent mode, PPC, is shown by the green solid line. The standard deviation of the mean (k = 1) is indicated by dashed lines.

Fig. 6
Fig. 6

Simulation results from Comsol Multiphysics for temperature rise for optical heating (red solid line) and electrical heating (blue dashed line), as well as an experimental result from electrical heating (green dotted line, right axis). The inset shows the temperature profile along the center of the back of the photodiode at t = 10 min. The temperature sensor position is at x = 0, and the bonding wires are connected to the top surface of the photodiode close to x = 5 mm.

Tables (3)

Tables Icon

Table 1 Measured absorbed optical power in photocurrent mode and thermal mode

Tables Icon

Table 2 Material and thermal properties of the materials used in the model

Tables Icon

Table 3 Simulation parameters for Cogenda Genius

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = e λ h c ( 1 δ ( λ ) ) ( 1 ρ ( λ ) ) .
P PC = i photo / R ( λ ) .
δ ( λ ) = 1 P PC P T .

Metrics