Abstract

We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging

Donghak Lee, Suho Ryu, Uihan Kim, Daeseong Jung, and Chulmin Joo
Biomed. Opt. Express 6(12) 4912-4922 (2015)

Efficient quantitative phase microscopy using programmable annular LED illumination

Jiaji Li, Qian Chen, Jialin Zhang, Yan Zhang, Linpeng Lu, and Chao Zuo
Biomed. Opt. Express 8(10) 4687-4705 (2017)

Motion-resolved quantitative phase imaging

Michael Kellman, Michael Chen, Zachary F. Phillips, Michael Lustig, and Laura Waller
Biomed. Opt. Express 9(11) 5456-5466 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Mertz, Introduction to Optical Microscopy (Roberts, 2010).
  2. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
    [Crossref] [PubMed]
  3. C. Burch and J. Stock, “Phase-contrast microscopy,” J. Sci. Instrum. 19(5), 71–75 (1942).
    [Crossref]
  4. G. Nomarski, “Differential microinterferometer with polarized light,” Phys. Radium 16, 9–13 (1955).
  5. M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” Prog. Opt. 57, 133–217 (2012).
    [Crossref]
  6. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
    [Crossref] [PubMed]
  7. Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
    [Crossref] [PubMed]
  8. Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
    [Crossref] [PubMed]
  9. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
    [Crossref] [PubMed]
  10. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  11. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [Crossref] [PubMed]
  12. N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express 15(15), 9239–9247 (2007).
    [Crossref] [PubMed]
  13. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  14. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  15. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
    [Crossref] [PubMed]
  16. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [Crossref] [PubMed]
  17. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  18. C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29(13), 1509–1511 (2004).
    [Crossref] [PubMed]
  19. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [Crossref] [PubMed]
  20. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  21. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983).
    [Crossref]
  22. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).
    [Crossref]
  23. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997).
    [Crossref]
  24. I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36(18), 3636–3638 (2011).
    [Crossref] [PubMed]
  25. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37(19), 4062–4064 (2012).
    [Crossref] [PubMed]
  26. L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
    [Crossref] [PubMed]
  27. D. Lee, S. Ryu, U. Kim, D. Jung, and C. Joo, “Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging,” Biomed. Opt. Express 6(12), 4912–4922 (2015).
    [Crossref] [PubMed]
  28. C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23(11), 14314–14328 (2015).
    [Crossref] [PubMed]
  29. L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
    [Crossref] [PubMed]
  30. G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
    [Crossref] [PubMed]
  31. Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
    [Crossref] [PubMed]
  32. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
    [Crossref]
  33. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  34. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
    [Crossref] [PubMed]
  35. R. A. Claus, P. P. Naulleau, A. R. Neureuther, and L. Waller, “Quantitative phase retrieval with arbitrary pupil and illumination,” Opt. Express 23(20), 26672–26682 (2015).
    [Crossref] [PubMed]
  36. H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (2004), pp. 485–488.
    [Crossref]
  37. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. 2(2), 121–127 (1985).
    [Crossref]
  38. H. Lu, J. Chung, X. Ou, and C. Yang, “Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast,” Opt. Express 24(22), 25345–25361 (2016).
    [Crossref] [PubMed]
  39. M. T. Cone, J. D. Mason, E. Figueroa, B. H. Hokr, J. N. Bixler, C. C. Castellanos, G. D. Noojin, J. C. Wigle, B. A. Rockwell, V. V. Yakovlev, and E. S. Fry, “Measuring the absorption coefficient of biological materials using integrating cavity ring-down spectroscopy,” Optica 2(2), 162–168 (2015).
    [Crossref]
  40. S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34(13), 1924–1926 (2009).
    [Crossref] [PubMed]
  41. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
    [Crossref] [PubMed]
  42. M. H. Jenkins and T. K. Gaylord, “Quantitative phase microscopy via optimized inversion of the phase optical transfer function,” Appl. Opt. 54(28), 8566–8579 (2015).
    [Crossref] [PubMed]
  43. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
    [Crossref] [PubMed]
  44. Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC),” PLoS One 12(2), e0171228 (2017).
    [Crossref] [PubMed]

2017 (1)

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC),” PLoS One 12(2), e0171228 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (8)

M. T. Cone, J. D. Mason, E. Figueroa, B. H. Hokr, J. N. Bixler, C. C. Castellanos, G. D. Noojin, J. C. Wigle, B. A. Rockwell, V. V. Yakovlev, and E. S. Fry, “Measuring the absorption coefficient of biological materials using integrating cavity ring-down spectroscopy,” Optica 2(2), 162–168 (2015).
[Crossref]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
[Crossref] [PubMed]

M. H. Jenkins and T. K. Gaylord, “Quantitative phase microscopy via optimized inversion of the phase optical transfer function,” Appl. Opt. 54(28), 8566–8579 (2015).
[Crossref] [PubMed]

D. Lee, S. Ryu, U. Kim, D. Jung, and C. Joo, “Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging,” Biomed. Opt. Express 6(12), 4912–4922 (2015).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23(11), 14314–14328 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
[Crossref]

R. A. Claus, P. P. Naulleau, A. R. Neureuther, and L. Waller, “Quantitative phase retrieval with arbitrary pupil and illumination,” Opt. Express 23(20), 26672–26682 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (5)

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36(18), 3636–3638 (2011).
[Crossref] [PubMed]

G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (3)

2004 (2)

1999 (1)

1997 (2)

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[Crossref] [PubMed]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997).
[Crossref]

1987 (1)

1985 (1)

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. 2(2), 121–127 (1985).
[Crossref]

1984 (1)

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).
[Crossref]

1983 (1)

1955 (2)

G. Nomarski, “Differential microinterferometer with polarized light,” Phys. Radium 16, 9–13 (1955).

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

1942 (1)

C. Burch and J. Stock, “Phase-contrast microscopy,” J. Sci. Instrum. 19(5), 71–75 (1942).
[Crossref]

Akkin, T.

Badizadegan, K.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Bashir, R.

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Best, C. A.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Bevilacqua, F.

Bhaduri, B.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” Prog. Opt. 57, 133–217 (2012).
[Crossref]

Bingham, P. R.

Bixler, J. N.

Burch, C.

C. Burch and J. Stock, “Phase-contrast microscopy,” J. Sci. Instrum. 19(5), 71–75 (1942).
[Crossref]

Castellanos, C. C.

Cense, B.

Chan, V.

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Chen, M.

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC),” PLoS One 12(2), e0171228 (2017).
[Crossref] [PubMed]

Chen, Q.

Choma, M. A.

Chu, K. K.

Chung, J.

Claus, R. A.

Cone, M. T.

Creazzo, T. L.

Cuche, E.

Cutler, R.

H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (2004), pp. 485–488.
[Crossref]

Dasari, R. R.

Davé, D. P.

de Boer, J. F.

Deflores, L. P.

Depeursinge, C.

Diller, K. R.

Ding, H.

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Eiju, T.

Ellerbee, A. K.

Feld, M. S.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Figueroa, E.

Ford, T. N.

Fry, E. S.

Gaylord, T. K.

Gillette, M. U.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Gureyev, T. E.

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997).
[Crossref]

Hariharan, P.

He, L.

H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (2004), pp. 485–488.
[Crossref]

Henle, M. L.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Hokr, B. H.

Horstmeyer, R.

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Hu, Y.

Iglesias, I.

Ikeda, T.

Iwai, H.

Izatt, J. A.

Jenkins, M. H.

Jin, K. H.

Joo, C.

Jung, D.

Kim, M. K.

Kim, U.

Kolner, C.

Kuriabova, T.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Lee, D.

Lee, K.

Lee, S.

Levine, A. J.

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Li, X.

Lim, J.

Liu, S.

Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
[Crossref] [PubMed]

Lu, H.

Malvar, H. S.

H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (2004), pp. 485–488.
[Crossref]

Mann, C. J.

Mason, J. D.

Mehta, S. B.

Mertz, J.

Millet, L.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Milner, T. E.

Mir, M.

Naulleau, P. P.

Neureuther, A. R.

Nomarski, G.

G. Nomarski, “Differential microinterferometer with polarized light,” Phys. Radium 16, 9–13 (1955).

Noojin, G. D.

Nugent, K. A.

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997).
[Crossref]

Oreb, B. F.

Ou, X.

Paquit, V. C.

Park, B. H.

Park, Y.

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Parthasarathy, A. B.

Phillips, Z. F.

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC),” PLoS One 12(2), e0171228 (2017).
[Crossref] [PubMed]

Popescu, G.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” Prog. Opt. 57, 133–217 (2012).
[Crossref]

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

Ramchandran, K.

Rockwell, B. A.

Rogers, J.

Rylander, C. G.

Ryu, S.

Sheppard, C. J.

Shin, S.

Stock, J.

C. Burch and J. Stock, “Phase-contrast microscopy,” J. Sci. Instrum. 19(5), 71–75 (1942).
[Crossref]

Streibl, N.

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. 2(2), 121–127 (1985).
[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).
[Crossref]

Sun, J.

Teague, M. R.

Tian, L.

Tobin, K. W.

Unarunotai, S.

Vaughan, J. C.

Waller, L.

Wang, J.

Wang, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” Prog. Opt. 57, 133–217 (2012).
[Crossref]

Wang, Z.

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Warnasooriya, N.

Welch, A. J.

Wigle, J. C.

Yakovlev, V. V.

Yamaguchi, I.

Yang, C.

Ye, J. C.

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Zhang, J.

Zhang, T.

Zheng, G.

Zhu, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” Prog. Opt. 57, 133–217 (2012).
[Crossref]

Zuo, C.

Appl. Opt. (2)

Biomed. Opt. Express (2)

J. Biomed. Opt. (2)

Z. Wang, L. Millet, V. Chan, H. Ding, M. U. Gillette, R. Bashir, and G. Popescu, “Label-free intracellular transport measured by spatial light interference microscopy,” J. Biomed. Opt. 16(2), 026019 (2011).
[Crossref] [PubMed]

Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope,” J. Biomed. Opt. 19(10), 106002 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. 2(2), 121–127 (1985).
[Crossref]

M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983).
[Crossref]

J. Sci. Instrum. (1)

C. Burch and J. Stock, “Phase-contrast microscopy,” J. Sci. Instrum. 19(5), 71–75 (1942).
[Crossref]

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).
[Crossref]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997).
[Crossref]

Opt. Express (8)

R. A. Claus, P. P. Naulleau, A. R. Neureuther, and L. Waller, “Quantitative phase retrieval with arbitrary pupil and illumination,” Opt. Express 23(20), 26672–26682 (2015).
[Crossref] [PubMed]

L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an LED array microscope,” Opt. Express 23(9), 11394–11403 (2015).
[Crossref] [PubMed]

C. Zuo, J. Sun, J. Zhang, Y. Hu, and Q. Chen, “Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix,” Opt. Express 23(11), 14314–14328 (2015).
[Crossref] [PubMed]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
[Crossref] [PubMed]

N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express 15(15), 9239–9247 (2007).
[Crossref] [PubMed]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

H. Lu, J. Chung, X. Ou, and C. Yang, “Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast,” Opt. Express 24(22), 25345–25361 (2016).
[Crossref] [PubMed]

Opt. Lett. (14)

I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36(18), 3636–3638 (2011).
[Crossref] [PubMed]

G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
[Crossref] [PubMed]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37(19), 4062–4064 (2012).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
[Crossref] [PubMed]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34(13), 1924–1926 (2009).
[Crossref] [PubMed]

C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29(13), 1509–1511 (2004).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

Optica (2)

Phys. Radium (1)

G. Nomarski, “Differential microinterferometer with polarized light,” Phys. Radium 16, 9–13 (1955).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5 Pt 1), 051925 (2011).
[Crossref] [PubMed]

PLoS One (1)

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC),” PLoS One 12(2), e0171228 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Prog. Opt. (1)

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, “Quantitative phase imaging,” Prog. Opt. 57, 133–217 (2012).
[Crossref]

Science (1)

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[Crossref] [PubMed]

Other (2)

J. Mertz, Introduction to Optical Microscopy (Roberts, 2010).

H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (2004), pp. 485–488.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (541 KB)      Dynamic movements of human sperm cells

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of cLEDscope for single-exposure QPI. A color LED array is placed ~100 mm away from the specimen plane (S). The LED illumination pattern is trisected into subregions with equal area. Each region is assigned red, green, and blue colors. Light passing through a transparent specimen is collected by an objective lens (OBJ), and subsequently detected by a color image sensor. Computation with R, G, and B images in combination with weak object transfer functions results in quantitative phase images. S: specimen plane, TL: tube lens.
Fig. 2
Fig. 2 (a) cLEDscope quantitative phase image of silica microspheres. The image was obtained with the color-leakage correction algorithm. (b) Phase distributions along dashed line in (a) for color-leakage corrected (solid line) and uncorrected (dashed line) cases. Application of color-leakage correction algorithm improves phase estimation accuracy. The scale bar represents 50μm.
Fig. 3
Fig. 3 Single-exposure DPC and quantitative phase images of immortalized human keratinocytes (a), human adipose-derived stem cells (b), and human red blood cells (c). Columns (I), (II), (III), and (IV) show the DPC images for colors R, G, B, and quantitative phase images of the specimens. The scale bar represents 25μm.
Fig. 4
Fig. 4 Snapshot of time-lapse images of human sperm cells. (a), (b), and (c) show DPC images for R, G, and B colors. (d) presents the quantitative phase image. Images were acquired at a frame rate of 30 fps and the image size was 512 × 512 pixels. The scale bar represents 25μm. See Visualization 1.
Fig. 5
Fig. 5 Comparison of the quantitative phase images based on monochromatic and color-coded LED illuminations. Note that four image acquisitions are required for monochromatic illumination, whereas cLEDscope performs phase imaging in a single shot. LED illumination patterns and corresponding phase images are presented in (a) and (b). The difference map between the images of (a) and (b) is shown in (c). The scale bar represents 25μm.
Fig. 6
Fig. 6 (Top) cLEDscope quantitative phase images of 5-μm silica microspheres obtained with gradient-corrected linear (a), linear (b), and bicubic (c) interpolation methods. The microspheres were immersed in the index-matching gel. The scalebar denotes 50 μm. (Bottom) Phase distributions along the dashed lines in the insets of the corresponding images.
Fig. 7
Fig. 7 (a1)–(c1) cLEDscope intensity images of a 1951 USAF resolution target acquired with gradient-corrected linear, linear, and bicubic color interpolation methods, respectively. (a2)–(c2) Magnified view of the regions indicated by the dashed rectangles in the corresponding images. The scalebar denotes 10 μm. (a3)–(c3) Intensity distributions along the dashed lines in (a2)–(c2).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

t(r)= e μ(r)+iϕ(r) 1μ(r)+iϕ(r)
I ˜ l (u)= D ˜ l δ(u)+ H ˜ l abs μ ˜ l (u)+ H ˜ l ph ϕ ˜ l (u)
D ˜ l = S ˜ l (u) | P ˜ (u) | 2 d 2 u
H ˜ l abs (u)=[( S ˜ l (u) P ˜ * (u)) P ˜ (u)+ P ˜ (u)( S ˜ l (u) P ˜ * (u))]
H ˜ l ph (u)=i[( S ˜ l (u) P ˜ * (u)) P ˜ (u) P ˜ (u)( S ˜ l (u) P ˜ * (u))]
I ˜ l (u)= D ˜ l δ(u)+ H ˜ l abs λ 0 λ l μ ˜ (u)+ H ˜ l ph λ 0 λ l ϕ ˜ (u)
I ˜ l DPC (u)=(2 I ˜ l (u) I ˜ m (u) I ˜ n (u))/( I ˜ l (u)+ I ˜ m (u)+ I ˜ n (u))
AX=B
H ˜ l_DPC abs (u)=(2 λ 0 λ l H ˜ l abs (u) λ 0 λ m H ˜ m abs (u) λ 0 λ n H ˜ n abs (u))/( D ˜ l + D ˜ m + D ˜ n )
H ˜ l_DPC ph (u)=(2 λ 0 λ l H ˜ l ph (u) λ 0 λ m H ˜ m ph (u) λ 0 λ n H ˜ n ph (u))/( D ˜ l + D ˜ m + D ˜ n )
min | AXB | 2 + α 2 | βX | 2
( μ(r) ϕ(r) )= F 1 { A H B ( A H A+ α 2 β H β) }
( I R CCD I G CCD I B CCD )=( R R R R G R R B R R R G R G G R B G R R B R G B R B B )( I R IMG I G IMG I B IMG )
( I R IMG I G IMG I B IMG )= ( R R R R G R R B R R R G R G G R B G R R B R G B R B B ) 1 ( I R CCD I G CCD I B CCD )

Metrics