Abstract

We have experimentally demonstrated a compact polarization beam splitter (PBS) based on the silicon nitride/silicon-on-insulator platform using the recently proposed augmented-low-index-guiding (ALIG) waveguide structure. The two orthogonal polarizations are split in an asymmetric multimode interference (MMI) section, which was 1.6 μm wide and 4.8 μm long. The device works well over the entire C-band wavelength range and has a measured low insertion loss of less than 1 dB. The polarization extinction ratio at the Bar Port is approximately 17 dB and at the Cross Port is approximately 25 dB. The design of the device is robust and has a good fabrication tolerance.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure

X. Sun, M. Z. Alam, J. S. Aitchison, and M. Mojahedi
Opt. Lett. 41(1) 163-166 (2016)

8.13  μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler

Chih-Wei Hsu, Ting-Kai Chang, Jhen-Yu Chen, and Yung-Chen Cheng
Appl. Opt. 55(12) 3313-3318 (2016)

An MMI-based polarization splitter using patterned metal and tilted joint

Keisuke Kojima, Wangqing Yuan, Bingnan Wang, Toshiaki Koike-Akino, Kieran Parsons, Satoshi Nishikawa, and Eiji Yagyu
Opt. Express 20(26) B371-B376 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  2. D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos, R. Zhang, P. Runge, K. Janiak, H.-G. Bach, A. G. Steffan, and Í. Molina-Fernández, “Integrated polarization beam splitter with relaxed fabrication tolerances,” Opt. Express 21(12), 14146–14151 (2013).
    [Crossref] [PubMed]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  4. H. Zhang, Y. Huang, S. Das, C. Li, M. Yu, P. G.-Q. Lo, M. Hong, and J. Thong, “Polarization splitter using horizontal slot waveguide,” Opt. Express 21(3), 3363–3369 (2013).
    [Crossref] [PubMed]
  5. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
    [Crossref] [PubMed]
  6. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref] [PubMed]
  7. D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
    [Crossref] [PubMed]
  8. Z. Lu, Y. Wang, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers,” Opt. Express 23(23), 29413–29422 (2015).
    [Crossref] [PubMed]
  9. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
    [Crossref] [PubMed]
  10. Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
    [Crossref] [PubMed]
  11. C.-L. Zou, F.-W. Sun, C.-H. Dong, X.-F. Ren, J.-M. Cui, X.-D. Chen, Z.-F. Han, and G.-C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett. 36(18), 3630–3632 (2011).
    [Crossref] [PubMed]
  12. T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
    [Crossref]
  13. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
    [Crossref]
  14. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  15. T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
    [Crossref]
  16. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
    [Crossref] [PubMed]
  17. B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
    [Crossref]
  18. M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
    [Crossref]
  19. Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
    [Crossref]
  20. Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
    [Crossref]
  21. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  22. X. Sun, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure,” Opt. Lett. 41(1), 163–166 (2016).
    [Crossref] [PubMed]
  23. Lumerical Solutions, Inc., http://www.lumerical.com .
  24. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]

2016 (3)

2015 (4)

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
[Crossref] [PubMed]

Z. Lu, Y. Wang, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers,” Opt. Express 23(23), 29413–29422 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

2011 (2)

2006 (2)

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

2005 (2)

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005).
[Crossref] [PubMed]

2001 (1)

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Aitchison, J. S.

Alam, M. Z.

Alonso-Ramos, C.

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Bach, H.-G.

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Bowers, J. E.

Chen, X.-D.

Chrostowski, L.

Cui, J.-M.

Dai, D.

Das, S.

Dong, C.-H.

Fukuda, H.

Grattan, K. T. V.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Guan, X.

Guo, G.-C.

Guo, X.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Halir, R.

Han, Z.-F.

Haus, H. A.

He, S.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

He, Y.

Hong, M.

Hu, T.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Hu, W.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Huang, X.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

H. Zhang, Y. Huang, S. Das, C. Li, M. Yu, P. G.-Q. Lo, M. Hong, and J. Thong, “Polarization splitter using horizontal slot waveguide,” Opt. Express 21(3), 3363–3369 (2013).
[Crossref] [PubMed]

Ippen, E. P.

Itabashi, S.

Jaeger, N. A. F.

Janiak, K.

Jiang, X.

Kim, D. W.

Kim, K. H.

Kim, Y.

Lee, M. H.

Li, C.

Li, H.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Li, Y.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Liang, D.

Liang, T. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Littlejohns, C. G.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Liu, C.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Liu, R.

Lo, P. G.-Q.

Lu, Z.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Mojahedi, M.

Molina-Fernández, Í.

Ortega-Moñux, A.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Pérez-Galacho, D.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Qiu, C.

Qiu, H.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Rahman, B. M. A.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Reed, G. T.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Ren, X.-F.

Rouifed, M. S.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Runge, P.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shi, Y.

Shinojima, H.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Somasiri, N.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Steffan, A. G.

Su, Y.

Sun, F.-W.

Sun, X.

X. Sun, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure,” Opt. Lett. 41(1), 163–166 (2016).
[Crossref] [PubMed]

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

Tan, Q.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref] [PubMed]

Tang, Y.

Themistos, C.

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Thong, J.

Tremblay, C.

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Tsuchizawa, T.

Tu, Z.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Wang, H.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Wang, J.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, X.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Wang, Y.

Watanabe, T.

Watts, M. R.

Wosinski, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Wu, H.

Wu, J.

Xiao, J.

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

Xu, Y.

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

Yamada, K.

Yang, J.

Yang, K.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref] [PubMed]

Yang, W.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Yi, H.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Yin, M.

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Yu, M.

Zhang, F.

Zhang, H.

Zhang, R.

Zhang, Y.

Zhang, Z.

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Zhou, W.

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref] [PubMed]

Zou, C.-L.

Appl. Phys. B (1)

B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Appl. Phys. Lett. (1)

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

IEEE Photonics J. (1)

T. Hu, H. Qiu, Z. Zhang, X. Guo, C. Liu, M. S. Rouifed, C. G. Littlejohns, G. T. Reed, and H. Wang, “A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

J. Lightwave Technol. (2)

Y. Xu, J. Xiao, and X. Sun, “Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide,” J. Lightwave Technol. 32(24), 4884–4890 (2014).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Nat. Photonics (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Opt. Commun. (2)

M. Yin, W. Yang, Y. Li, X. Wang, and H. Li, “CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter,” Opt. Commun. 335, 48–52 (2015).
[Crossref]

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Opt. Express (7)

D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos, R. Zhang, P. Runge, K. Janiak, H.-G. Bach, A. G. Steffan, and Í. Molina-Fernández, “Integrated polarization beam splitter with relaxed fabrication tolerances,” Opt. Express 21(12), 14146–14151 (2013).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

H. Zhang, Y. Huang, S. Das, C. Li, M. Yu, P. G.-Q. Lo, M. Hong, and J. Thong, “Polarization splitter using horizontal slot waveguide,” Opt. Express 21(3), 3363–3369 (2013).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
[Crossref] [PubMed]

Z. Lu, Y. Wang, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers,” Opt. Express 23(23), 29413–29422 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref] [PubMed]

Opt. Lett. (5)

Sci. Rep. (1)

Q. Tan, X. Huang, W. Zhou, and K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep. 3, 2206 (2013).
[Crossref] [PubMed]

Other (1)

Lumerical Solutions, Inc., http://www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) 3D schematic of the proposed PBS. (b) The top view of the proposed PBS.
Fig. 2
Fig. 2 (a) Cross section of the input and output (at the Bar Port) ALIG waveguides. (b) Cross section of the asymmetric MMI segment of the polarization beam splitter. (c) Cross section of the output waveguide at the Cross Port.
Fig. 3
Fig. 3 (a) Intensity profile for the TE mode in the ALIG input waveguide. (b) Intensity profile for the TM mode in the ALIG input waveguide. The dimensions are t1 = 120 nm, t2 = 350 nm, W1 = 450 nm. For definitions of the parameters, see Fig. 2.
Fig. 4
Fig. 4 Intensity profiles in the MMI section. (a) TE0, (b) TE1, (c) TE2, (d) TE3, (e) TM0, and (f) TM1. The dimensions are t1 = 120 nm, t2 = 350 nm, t3 = 20 nm, WMMI = 1.6 µm. For the definitions of these parameters, see Fig. 2.
Fig. 5
Fig. 5 Effective mode indices of the two lowest order TE modes and the fundamental TM mode in the asymmetric MMI section as a function of the silicon nitride thickness (t3).
Fig. 6
Fig. 6 Light propagates along the proposed PBS for the (a) TE mode and (b) TM mode at 1.55 µm. The dimensions are t1 = 120 nm, t2 = 350 nm, t3 = 20 nm, W1 = 450 nm, W2 = 600 nm, WMMI = 1.6 µm, Wa = 900 nm, Wb = 1 µm, LMMI = 4.8 μm, La = 2 µm, Lb = 1 µm, and R = 10 µm. For the definition of the variables, see Figs. 1 and 2.
Fig. 7
Fig. 7 Transmissions for the TM and TE modes for different silicon nitride thicknesses, t3. Other dimensions are the same as indicated in Fig. 6.
Fig. 8
Fig. 8 Fabrication process flow. (a) SOI substrate. (b) Thermal oxidation. (c) BOE etching. (d) LPCVD silicon nitride deposition. (e) ZEP 520 spin-coating. (f) EBL for partial etching. (g) RIE partial etching. (h) Resist removal. (i) HSQ spin-coating. (j) RIE for full etching. (k) Upper cladding deposition.
Fig. 9
Fig. 9 SEM micrograph of the top view of the PBS. (a) Full device. (b) Zoom-in of the MMI section.
Fig. 10
Fig. 10 Experimental setup used to measure the power and spectrum of different polarizations states through the ALIG-PBS.
Fig. 11
Fig. 11 (a) Measured and simulated transmissions for the TE and TM polarizations at the Bar Port. (b) Measured and simulated transmissions for the TE and TM polarizations at the Cross Port.
Fig. 12
Fig. 12 Measured polarization extinction ratios at the Bar and Cross Ports.

Metrics