Abstract

Plenoptic cameras are used for capturing flames in studies of high-temperature phenomena. However, simulations of plenoptic camera models can be used prior to the experiment improve experimental efficiency and reduce cost. In this work, microlens arrays, which are based on the established light field camera model, are optimized into a hexagonal structure with three types of microlenses. With this improved plenoptic camera model, light field imaging of static objects and flame are simulated using the calibrated parameters of the Raytrix camera (R29). The optimized models improve the image resolution, imaging screen utilization, and shooting range of depth of field.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional temperature field measurement of flame using a single light field camera

Jun Sun, Chuanlong Xu, Biao Zhang, Md. Moinul Hossain, Shimin Wang, Hong Qi, and Heping Tan
Opt. Express 24(2) 1118-1132 (2016)

Distance measurement based on light field geometry and ray tracing

Yanqin Chen, Xin Jin, and Qionghai Dai
Opt. Express 25(1) 59-76 (2017)

Correction model for microlens array assembly error in light field camera

Tian-Jiao Li, Su-Ning Li, Sai Li, Yuan Yuan, and He-Ping Tan
Opt. Express 24(21) 24524-24543 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Sehra and W. Whitlow., “Propulsion and power for 21st century aviation,” Prog. Aerosp. Sci. 40(4-5), 199–235 (2004).
    [Crossref]
  2. G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
    [Crossref]
  3. B. Zhang, C.-L. Xu, and S.-M. Wang, “Generalized source finite volume method for radiative transfer equation in participating media,” J. Quant. Spectrosc. Radiat. Transf. 189, 189–197 (2017).
    [Crossref]
  4. H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray-flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2015).
    [Crossref]
  5. J. J. T. Bolan, K. C. Johnson, and B. S. Thurow, “Enhanced imaging of reacting flows using 3D deconvolution and a plenoptic camera,” in AIAA SciTech Forum,53rd AIAA Aerospace Sciences Meeting (2015), paper 2015–0532.
    [Crossref]
  6. L. Su, Q. Yan, J. Cao, and Y. Yuan, “Calibrating the orientation between a microlens array and a sensor based on projective geometry,” Opt. Lasers Eng. 82, 22–27 (2016).
    [Crossref]
  7. C.-H. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Imaging and Applied Optics (Optical Society of America, 2013), paper CTh3B.2.
  8. S. A. Shroff and K. Berkner, “Image formation analysis and high resolution image reconstruction for plenoptic imaging systems,” Appl. Opt. 52(10), D22–D31 (2013).
    [Crossref] [PubMed]
  9. C.-K. Liang and R. Ramamoorthi, “A light transport framework for lenslet light field cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
    [Crossref]
  10. R. Zhang, P. Liu, D. Liu, and G. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
    [Crossref]
  11. J. Schwiegerling, “Plenoptic camera image simulation for reconstruction algorithm verification,” Proc. SPIE 9193, 178–182 (2014).
  12. B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
    [Crossref]
  13. M. Premuda, E. Palazzi, F. Ravegnani, D. Bortoli, S. Masieri, and G. Giovanelli, “MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere,” Opt. Express 20(7), 7973–7993 (2012).
    [Crossref] [PubMed]
  14. Y. Yuan, B. Liu, S. Li, and H.-P. Tan, “Light-field-camera imaging simulation of participatory media using Monte Carlo method,” Int. J. Heat Mass Transfer 102, 518–527 (2016).
    [Crossref]
  15. C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
    [Crossref]
  16. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).
  17. T. Georgiev and C. Intwala, “Light field camera design for integral view photography,” Adobe System, Inc., Technical Report (2006).
  18. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), 31–42.
  19. U. Perwass and C. Perwass, “Digital imaging system, plenoptic optical device and image data processing method,” US Patent 8,619,177 (2013).
  20. A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Adobe System, Inc., Technical Report (2008).
  21. T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
    [Crossref]
  22. Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
    [Crossref] [PubMed]
  23. M.-K. Park, H. J. Lee, J.-S. Park, M. Kim, J. M. Bae, I. Mahmud, and H.-R. Kim, “Design and Fabrication of Multi-Focusing Microlens Array with Different Numerical Apertures by using Thermal Reflow Method,” J. Opt. Soc. Korea 18(1), 71–77 (2014).
    [Crossref]
  24. X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process. 10(10), 1521–1527 (2001).
    [Crossref] [PubMed]
  25. J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
    [Crossref] [PubMed]
  26. Z. L. Zhou, “Research on light field imaging technology,” dissertation, University of Science and Tecnology of China, An Hui, China (2012).

2017 (1)

B. Zhang, C.-L. Xu, and S.-M. Wang, “Generalized source finite volume method for radiative transfer equation in participating media,” J. Quant. Spectrosc. Radiat. Transf. 189, 189–197 (2017).
[Crossref]

2016 (3)

L. Su, Q. Yan, J. Cao, and Y. Yuan, “Calibrating the orientation between a microlens array and a sensor based on projective geometry,” Opt. Lasers Eng. 82, 22–27 (2016).
[Crossref]

Y. Yuan, B. Liu, S. Li, and H.-P. Tan, “Light-field-camera imaging simulation of participatory media using Monte Carlo method,” Int. J. Heat Mass Transfer 102, 518–527 (2016).
[Crossref]

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

2015 (5)

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

C.-K. Liang and R. Ramamoorthi, “A light transport framework for lenslet light field cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

R. Zhang, P. Liu, D. Liu, and G. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray-flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (3)

M. Premuda, E. Palazzi, F. Ravegnani, D. Bortoli, S. Masieri, and G. Giovanelli, “MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere,” Opt. Express 20(7), 7973–7993 (2012).
[Crossref] [PubMed]

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

2005 (1)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

2004 (1)

A. K. Sehra and W. Whitlow., “Propulsion and power for 21st century aviation,” Prog. Aerosp. Sci. 40(4-5), 199–235 (2004).
[Crossref]

2001 (2)

G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
[Crossref]

X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process. 10(10), 1521–1527 (2001).
[Crossref] [PubMed]

Bae, J. M.

Berkner, K.

Bortoli, D.

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

Cao, J.

L. Su, Q. Yan, J. Cao, and Y. Yuan, “Calibrating the orientation between a microlens array and a sensor based on projective geometry,” Opt. Lasers Eng. 82, 22–27 (2016).
[Crossref]

Chen, H.

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray-flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2015).
[Crossref]

Cully, S.

G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
[Crossref]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

Gemmen, R.

G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
[Crossref]

Georgiev, T.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

Giovanelli, G.

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), 31–42.

Horowitz, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

Hossain, M. M.

Ji, A.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Kim, H.-R.

Kim, M.

Lee, H. J.

Lei, Y.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Levoy, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), 31–42.

Li, S.

Y. Yuan, B. Liu, S. Li, and H.-P. Tan, “Light-field-camera imaging simulation of participatory media using Monte Carlo method,” Int. J. Heat Mass Transfer 102, 518–527 (2016).
[Crossref]

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Li, X.

X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process. 10(10), 1521–1527 (2001).
[Crossref] [PubMed]

Liang, C.-K.

C.-K. Liang and R. Ramamoorthi, “A light transport framework for lenslet light field cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

Lillo, P. M.

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray-flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2015).
[Crossref]

Liu, B.

Y. Yuan, B. Liu, S. Li, and H.-P. Tan, “Light-field-camera imaging simulation of participatory media using Monte Carlo method,” Int. J. Heat Mass Transfer 102, 518–527 (2016).
[Crossref]

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Liu, D.

R. Zhang, P. Liu, D. Liu, and G. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Liu, P.

R. Zhang, P. Liu, D. Liu, and G. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

Mahmud, I.

Masieri, S.

McMillian, M.

G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
[Crossref]

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

Orchard, M. T.

X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process. 10(10), 1521–1527 (2001).
[Crossref] [PubMed]

Palazzi, E.

Park, J.-S.

Park, M.-K.

Perwass, C.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Premuda, M.

Qi, H.

Ramamoorthi, R.

C.-K. Liang and R. Ramamoorthi, “A light transport framework for lenslet light field cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

Ravegnani, F.

Richards, G.

G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
[Crossref]

Rogers, W. A.

G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
[Crossref]

Sang, H.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Schwiegerling, J.

J. Schwiegerling, “Plenoptic camera image simulation for reconstruction algorithm verification,” Proc. SPIE 9193, 178–182 (2014).

Sehra, A. K.

A. K. Sehra and W. Whitlow., “Propulsion and power for 21st century aviation,” Prog. Aerosp. Sci. 40(4-5), 199–235 (2004).
[Crossref]

Shroff, S. A.

Shuai, Y.

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Sick, V.

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray-flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2015).
[Crossref]

Su, G.

R. Zhang, P. Liu, D. Liu, and G. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Su, L.

L. Su, Q. Yan, J. Cao, and Y. Yuan, “Calibrating the orientation between a microlens array and a sensor based on projective geometry,” Opt. Lasers Eng. 82, 22–27 (2016).
[Crossref]

Sun, J.

Tan, H.

Tan, H. P.

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Tan, H.-P.

Y. Yuan, B. Liu, S. Li, and H.-P. Tan, “Light-field-camera imaging simulation of participatory media using Monte Carlo method,” Int. J. Heat Mass Transfer 102, 518–527 (2016).
[Crossref]

Tong, Q.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Wang, S.

Wang, S.-M.

B. Zhang, C.-L. Xu, and S.-M. Wang, “Generalized source finite volume method for radiative transfer equation in participating media,” J. Quant. Spectrosc. Radiat. Transf. 189, 189–197 (2017).
[Crossref]

Whitlow, W.

A. K. Sehra and W. Whitlow., “Propulsion and power for 21st century aviation,” Prog. Aerosp. Sci. 40(4-5), 199–235 (2004).
[Crossref]

Wietzke, L.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Xie, C.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Xu, C.

Xu, C.-L.

B. Zhang, C.-L. Xu, and S.-M. Wang, “Generalized source finite volume method for radiative transfer equation in participating media,” J. Quant. Spectrosc. Radiat. Transf. 189, 189–197 (2017).
[Crossref]

Yan, Q.

L. Su, Q. Yan, J. Cao, and Y. Yuan, “Calibrating the orientation between a microlens array and a sensor based on projective geometry,” Opt. Lasers Eng. 82, 22–27 (2016).
[Crossref]

Yuan, Y.

L. Su, Q. Yan, J. Cao, and Y. Yuan, “Calibrating the orientation between a microlens array and a sensor based on projective geometry,” Opt. Lasers Eng. 82, 22–27 (2016).
[Crossref]

Y. Yuan, B. Liu, S. Li, and H.-P. Tan, “Light-field-camera imaging simulation of participatory media using Monte Carlo method,” Int. J. Heat Mass Transfer 102, 518–527 (2016).
[Crossref]

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Zhang, B.

B. Zhang, C.-L. Xu, and S.-M. Wang, “Generalized source finite volume method for radiative transfer equation in participating media,” J. Quant. Spectrosc. Radiat. Transf. 189, 189–197 (2017).
[Crossref]

J. Sun, C. Xu, B. Zhang, M. M. Hossain, S. Wang, H. Qi, and H. Tan, “Three-dimensional temperature field measurement of flame using a single light field camera,” Opt. Express 24(2), 1118–1132 (2016).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, P. Liu, D. Liu, and G. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

Zhang, X.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

ACM Trans. Graph. (1)

C.-K. Liang and R. Ramamoorthi, “A light transport framework for lenslet light field cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

Appl. Opt. (1)

Computer Science Tech. Rep. (1)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Tech. Rep. 2, 1–11 (2005).

IEEE Trans. Image Process. (1)

X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans. Image Process. 10(10), 1521–1527 (2001).
[Crossref] [PubMed]

Int. J. Engine Res. (1)

H. Chen, P. M. Lillo, and V. Sick, “Three-dimensional spray-flow interaction in a spark-ignition direct-injection engine,” Int. J. Engine Res. 17(1), 129–138 (2015).
[Crossref]

Int. J. Heat Mass Transfer (1)

Y. Yuan, B. Liu, S. Li, and H.-P. Tan, “Light-field-camera imaging simulation of participatory media using Monte Carlo method,” Int. J. Heat Mass Transfer 102, 518–527 (2016).
[Crossref]

J. Opt. Soc. Korea (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

B. Zhang, C.-L. Xu, and S.-M. Wang, “Generalized source finite volume method for radiative transfer equation in participating media,” J. Quant. Spectrosc. Radiat. Transf. 189, 189–197 (2017).
[Crossref]

Opt. Commun. (2)

R. Zhang, P. Liu, D. Liu, and G. Su, “Reconstruction of refocusing and all-in-focus images based on forward simulation model of plenoptic camera,” Opt. Commun. 357, 1–6 (2015).
[Crossref]

B. Liu, Y. Yuan, S. Li, Y. Shuai, and H. P. Tan, “Simulation of light-field camera imaging based on ray splitting Monte Carlo method,” Opt. Commun. 355, 15–26 (2015).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

L. Su, Q. Yan, J. Cao, and Y. Yuan, “Calibrating the orientation between a microlens array and a sensor based on projective geometry,” Opt. Lasers Eng. 82, 22–27 (2016).
[Crossref]

Proc. SPIE (3)

J. Schwiegerling, “Plenoptic camera image simulation for reconstruction algorithm verification,” Proc. SPIE 9193, 178–182 (2014).

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

Prog. Aerosp. Sci. (1)

A. K. Sehra and W. Whitlow., “Propulsion and power for 21st century aviation,” Prog. Aerosp. Sci. 40(4-5), 199–235 (2004).
[Crossref]

Pror. Energy Combust. Sci. (1)

G. Richards, M. McMillian, R. Gemmen, W. A. Rogers, and S. Cully, “Issues for low-emission, fuel-flexible power systems,” Pror. Energy Combust. Sci. 27(2), 141–169 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Other (7)

Z. L. Zhou, “Research on light field imaging technology,” dissertation, University of Science and Tecnology of China, An Hui, China (2012).

J. J. T. Bolan, K. C. Johnson, and B. S. Thurow, “Enhanced imaging of reacting flows using 3D deconvolution and a plenoptic camera,” in AIAA SciTech Forum,53rd AIAA Aerospace Sciences Meeting (2015), paper 2015–0532.
[Crossref]

C.-H. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Imaging and Applied Optics (Optical Society of America, 2013), paper CTh3B.2.

T. Georgiev and C. Intwala, “Light field camera design for integral view photography,” Adobe System, Inc., Technical Report (2006).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), 31–42.

U. Perwass and C. Perwass, “Digital imaging system, plenoptic optical device and image data processing method,” US Patent 8,619,177 (2013).

A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Adobe System, Inc., Technical Report (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Camera structure model (not drawn to scale).

Fig. 2
Fig. 2

Microlens configuration diagram.

Fig. 3
Fig. 3

Pattern diagram for three types of lens arrays.

Fig. 4
Fig. 4

The influence of different parameters on the microlens focal length.

Fig. 5
Fig. 5

The principle of subaperture processing.

Fig. 6
Fig. 6

Diffusive reflective surfaces.

Fig. 7
Fig. 7

Light spot on CCD by microlens (previous work [12]).

Fig. 8
Fig. 8

Light spot on CCD by microlens (this work).

Fig. 9
Fig. 9

three types of microlens captured by Raytrix camera [19].

Fig. 10
Fig. 10

Subaperture images from different camera types.

Fig. 11
Fig. 11

Simulation of R29 camera and Images acquired by actual cameras.

Fig. 12
Fig. 12

Subaperture images remapped by simulated camera model.

Fig. 13
Fig. 13

Refocus images.

Fig. 14
Fig. 14

Schematic of an ellipsoidal stratified flame.

Fig. 15
Fig. 15

Images of an ellipsoidal layered flame [12].

Fig. 16
Fig. 16

Images of an ellipsoidal layered flame using the model presented in this work.

Tables (4)

Tables Icon

Table 2 Comparison between plenoptic2.0 and plenoptic1.0

Tables Icon

Table 3 Camera module specification [25].

Tables Icon

Table 4 Temperature and radiative parameters of ellipsoidal flame layers [14].

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 f =(n1)[ 1 R 1 1 R 2 + (n1)l n R 1 R 2 ]
B D = B L B D L N= N L B D L
a 0 = [ 1 f 1 B ( 1 p D ) ] 1
a 0 + = [ 1 f 1 B ( 1+ p D ) ] 1
a 0 =| a 0 + a 0 |
a 0 + ( f 2 )= a 0 ( f 1 )
a 0 + ( f 3 )= a 0 ( f 2 )
f( i+u,j+v )=( 1u )×( 1v )×f( i,j )+( 1u )×v×f( i,j+1 )+ u×( 1v )×f( i+1,j )+u×v×f( i+1,j+1 )
f( i,j ) = ( 2×cosθ1 )×f( i,j ) + 1cosθ 2 ×f( i,jcosθ )+ 1cosθ 2 ×f( i,j+cosθ )+ 1cosθ 2 ×f( i1,jcosθ )+ 1cosθ 2 ×f( i1,j+cosθ )
f( i,j ) = 1 4 × [ f( i,j 1 2 )+f( i,j+ 1 2 )+f( i1,j 1 2 )+f( i1,j+ 1 2 ) ]

Metrics