Abstract

We propose and demonstrate an all-metal flexible reflective multiband waveplate based on nano-grating structure using high efficient electroplating growing process, which exhibits quarter waveplate at two wavelengths (λ = 465nm and λ = 921nm) and half waveplate at another wavelength (λ = 656nm). Using Finite Difference Time Domain (FDTD) modeling, the phase shift and reflection efficiency are simulated and designed for a variety of geometrical parameters. A fast and cost-effective technique based on conventional interference lithography and nickel electroplating process is demonstrated to fabricate the all-metal, large-area and flexible waveplate. Experimental results show that the fabricated monolithic all-metal nano structure of the proposed device are in high fidelity with the structure on template and the optical performance of the device are in excellent agreement with the theoretical prediction. The proposed structure and the fabrication method suggests an effective way to realize all-metal, ultrathin, self-supporting and flexible devices for various applications in rugged environment such as high temperature or high pressure environment, and also in the fast growing fields of flexible (wearable) optoelectronics, flexible displays and other curved or nonplanar devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces

Hongzhen Qiao, Jianjun Yang, Fei Wang, Yang Yang, and Julong Sun
Opt. Express 23(20) 26617-26627 (2015)

High efficiency reflective waveplates in the midwave infrared

T. Ribaudo, A. Taylor, B.-M. Nguyen, D. Bethke, and E. A. Shaner
Opt. Express 22(3) 2821-2829 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. S. Cole and R. A. Kashnow, “A new reflective dichroic liquid-crystal display device,” Appl. Phys. Lett. 30(12), 619–621 (1977).
    [Crossref]
  2. K. L. Tan, K. D. Hendrix, C. R. Hruska, and N. A. O’Brien, “Inorganic reflective achromatic quarter-waveplate for optical pick-up applications,” Jpn. J. Appl. Phys. 48(3), 03A20 (2009).
    [Crossref]
  3. S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
    [Crossref]
  4. R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
    [Crossref]
  5. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
    [Crossref] [PubMed]
  6. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett. 36(9), 1626–1628 (2011).
    [Crossref] [PubMed]
  7. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [Crossref] [PubMed]
  8. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
    [Crossref] [PubMed]
  9. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36(13), 2498–2500 (2011).
    [Crossref] [PubMed]
  10. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
    [Crossref]
  11. M. Y. Lin, T. H. Tsai, Y. L. Kang, Y. C. Chen, Y. H. Huang, Y. J. Chen, X. Fang, H. Y. Lin, W. K. Choi, L. A. Wang, C. C. Wu, and S. C. Lee, “Design and fabrication of birefringent nano-grating structure for circularly polarized light emission,” Opt. Express 22(7), 7388–7398 (2014).
    [Crossref] [PubMed]
  12. Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17(4), 2871–2879 (2009).
    [Crossref] [PubMed]
  13. I. Yamada, T. Ishihara, and J. Yanagisawa, “Reflective waveplate with subwavelength grating structure,” Jpn. J. Appl. Phys. 54(9), 092203 (2015).
    [Crossref]
  14. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
    [Crossref]
  15. T. Ribaudo, A. Taylor, B.-M. Nguyen, D. Bethke, and E. A. Shaner, “High efficiency reflective waveplates in the midwave infrared,” Opt. Express 22(3), 2821–2829 (2014).
    [Crossref] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  17. K. Hili, D. Fan, V. A. Guzenko, and Y. Ekinci, “Nickel electroplating for high-resolution nanostructures,” Microelectron. Eng. 141, 122–128 (2015).
    [Crossref]

2015 (2)

I. Yamada, T. Ishihara, and J. Yanagisawa, “Reflective waveplate with subwavelength grating structure,” Jpn. J. Appl. Phys. 54(9), 092203 (2015).
[Crossref]

K. Hili, D. Fan, V. A. Guzenko, and Y. Ekinci, “Nickel electroplating for high-resolution nanostructures,” Microelectron. Eng. 141, 122–128 (2015).
[Crossref]

2014 (2)

2013 (1)

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
[Crossref]

2012 (2)

2011 (3)

2009 (3)

K. L. Tan, K. D. Hendrix, C. R. Hruska, and N. A. O’Brien, “Inorganic reflective achromatic quarter-waveplate for optical pick-up applications,” Jpn. J. Appl. Phys. 48(3), 03A20 (2009).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17(4), 2871–2879 (2009).
[Crossref] [PubMed]

2008 (1)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

1993 (1)

S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
[Crossref]

1977 (1)

H. S. Cole and R. A. Kashnow, “A new reflective dichroic liquid-crystal display device,” Appl. Phys. Lett. 30(12), 619–621 (1977).
[Crossref]

Albrektsen, O.

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Bethke, D.

Bozhevolnyi, S. I.

Chen, Y. C.

Chen, Y. J.

Choi, W. K.

Cole, H. S.

H. S. Cole and R. A. Kashnow, “A new reflective dichroic liquid-crystal display device,” Appl. Phys. Lett. 30(12), 619–621 (1977).
[Crossref]

Crozier, K. B.

Dagenais, M.

S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
[Crossref]

Demir, H. V.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Ekinci, Y.

K. Hili, D. Fan, V. A. Guzenko, and Y. Ekinci, “Nickel electroplating for high-resolution nanostructures,” Microelectron. Eng. 141, 122–128 (2015).
[Crossref]

Fan, D.

K. Hili, D. Fan, V. A. Guzenko, and Y. Ekinci, “Nickel electroplating for high-resolution nanostructures,” Microelectron. Eng. 141, 122–128 (2015).
[Crossref]

Fang, X.

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Gordon, R.

Grahn, P.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
[Crossref]

Guo, C. C.

Guzenko, V. A.

K. Hili, D. Fan, V. A. Guzenko, and Y. Ekinci, “Nickel electroplating for high-resolution nanostructures,” Microelectron. Eng. 141, 122–128 (2015).
[Crossref]

Hendrix, K. D.

K. L. Tan, K. D. Hendrix, C. R. Hruska, and N. A. O’Brien, “Inorganic reflective achromatic quarter-waveplate for optical pick-up applications,” Jpn. J. Appl. Phys. 48(3), 03A20 (2009).
[Crossref]

Hili, K.

K. Hili, D. Fan, V. A. Guzenko, and Y. Ekinci, “Nickel electroplating for high-resolution nanostructures,” Microelectron. Eng. 141, 122–128 (2015).
[Crossref]

Hruska, C. R.

K. L. Tan, K. D. Hendrix, C. R. Hruska, and N. A. O’Brien, “Inorganic reflective achromatic quarter-waveplate for optical pick-up applications,” Jpn. J. Appl. Phys. 48(3), 03A20 (2009).
[Crossref]

Huang, Y. H.

Ishihara, T.

I. Yamada, T. Ishihara, and J. Yanagisawa, “Reflective waveplate with subwavelength grating structure,” Jpn. J. Appl. Phys. 54(9), 092203 (2015).
[Crossref]

Jiang, S. J.

S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
[Crossref]

Kaivola, M.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
[Crossref]

Kang, Y. L.

Kashnow, R. A.

H. S. Cole and R. A. Kashnow, “A new reflective dichroic liquid-crystal display device,” Appl. Phys. Lett. 30(12), 619–621 (1977).
[Crossref]

Khoo, E. H.

Kojima, K.

S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
[Crossref]

Kosku Perkgoz, N.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Kravchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
[Crossref]

Lee, S. C.

Li, E. P.

Lin, H. Y.

Lin, L.

Lin, M. Y.

Liu, K.

Ma, T.

Melik, R.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Morgan, R. A.

S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
[Crossref]

Nguyen, B.-M.

Nielsen, M. G.

O’Brien, N. A.

K. L. Tan, K. D. Hendrix, C. R. Hruska, and N. A. O’Brien, “Inorganic reflective achromatic quarter-waveplate for optical pick-up applications,” Jpn. J. Appl. Phys. 48(3), 03A20 (2009).
[Crossref]

Ovchinnikov, V.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
[Crossref]

Pan, Z. Q.

S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
[Crossref]

Pang, Y.

Pors, A.

Puttlitz, C.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Ribaudo, T.

Roberts, A.

Shaner, E. A.

Shevchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
[Crossref]

Tan, K. L.

K. L. Tan, K. D. Hendrix, C. R. Hruska, and N. A. O’Brien, “Inorganic reflective achromatic quarter-waveplate for optical pick-up applications,” Jpn. J. Appl. Phys. 48(3), 03A20 (2009).
[Crossref]

Taylor, A.

Tsai, T. H.

Unal, E.

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

Valle, G. D.

Wang, L. A.

Willatzen, M.

Wu, C. C.

Yamada, I.

I. Yamada, T. Ishihara, and J. Yanagisawa, “Reflective waveplate with subwavelength grating structure,” Jpn. J. Appl. Phys. 54(9), 092203 (2015).
[Crossref]

Yanagisawa, J.

I. Yamada, T. Ishihara, and J. Yanagisawa, “Reflective waveplate with subwavelength grating structure,” Jpn. J. Appl. Phys. 54(9), 092203 (2015).
[Crossref]

Yang, B.

Ye, W. M.

Yuan, X. D.

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Zhu, Z. H.

Appl. Phys. Lett. (4)

S. J. Jiang, Z. Q. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulationin vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(26), 3545–3547 (1993).
[Crossref]

R. Melik, E. Unal, N. Kosku Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009).
[Crossref]

H. S. Cole and R. A. Kashnow, “A new reflective dichroic liquid-crystal display device,” Appl. Phys. Lett. 30(12), 619–621 (1977).
[Crossref]

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett. 103(3), 033111 (2013).
[Crossref]

Jpn. J. Appl. Phys. (2)

I. Yamada, T. Ishihara, and J. Yanagisawa, “Reflective waveplate with subwavelength grating structure,” Jpn. J. Appl. Phys. 54(9), 092203 (2015).
[Crossref]

K. L. Tan, K. D. Hendrix, C. R. Hruska, and N. A. O’Brien, “Inorganic reflective achromatic quarter-waveplate for optical pick-up applications,” Jpn. J. Appl. Phys. 48(3), 03A20 (2009).
[Crossref]

Microelectron. Eng. (1)

K. Hili, D. Fan, V. A. Guzenko, and Y. Ekinci, “Nickel electroplating for high-resolution nanostructures,” Microelectron. Eng. 141, 122–128 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B (1)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Phys. Rev. Lett. (1)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of a self-supporting multiband waveplate based on Al metallic nano grating on a thin metal (Ni) substrate with parameters: Period of grating, P; Ridge width of grating, W and Depth of grating, H1.
Fig. 2
Fig. 2 Amplitude ratio, phase difference and reflectance of a reflecting nanograting waveplate with a linearly polarized incident light (polarization orientation θ = 45°) as a function of P, W and H1. (a), (c) and (e): Amplitude ratio (solid symbol) and phase difference (hollow symbol) with different P, W and H1, respectively; (b), (d) and (f): Corresponding reflectance of the waveplate with different P, W and H1. In the simulations, P = 0.25µm, W = 0.13µm and H1 = 0.13µm, unless specific indication.
Fig. 3
Fig. 3 (a) Amplitude ratio (solid symbols) and phase difference (hollow symbols) of the device with different H2; (b) Corresponding reflectance of device with different H2. (c) The amplitude ratio of the device with different polarization orientation at different operating wavelengths. (d) Reflectance of device with different polarization orientation. In the simulations, P = 0.25µm, W = 0.13µm and H1 = 0.13µm.
Fig. 4
Fig. 4 Schematic diagram of the fabrication process. I—Photoresist coating on a SiO2substrate; II—Two beam interference exposure; III—Development; IV—deposition of Al and Ni; V—electroplating of Ni; and VI—removal of metal pattern from SiO2 substrate.
Fig. 5
Fig. 5 Scanning electron micrographs of the fabricated resist and metal grating structure. (a) section-view of resist grating based on SiO2 substrate; (b) oblique-view of metal grating section; (c) and (d) pictures of the fabricated metal-grating. The measured parameters of fabricated resist grating structure are P = 0.25µm, W = 0.12µm and H1 = 0.13µm.
Fig. 6
Fig. 6 (a) Schematic of the optical measurement setup; (b) Illustration of polarization states of the incident and reflected light by the designed waveplate at three wavelengths: 465nm (red), 656nm (green) and 921nm (blue). The normalized incident electric field, Ein, is shown by the red, green and blue solid line with corresponding polarization orientations 43°, 40° and 41°, respectively. The Y-axis is parallel to the grating grooves.
Fig. 7
Fig. 7 (a) The measured relative reflection spectra of X- (black) and Y-component (red) of the fabricated reflective waveplate; (b) – (d) Experimentally measured polarization state of the incident light (hollow circles) and the reflected light (solid triangles) and its comparison with theoretical values (red line) at 465nm, 656nm and 921nm with polarization orientation angle of incidence θ = 43°, 40° and 41° respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δφ=( 2π λ )( Δn H 1 )

Metrics