Abstract

Diffuse reflectance spectroscopy (DRS) can be used to estimate oxygen saturation (SO2) of hemoglobin and blood fraction (fB) in brain tissue. The aim of the study was to investigate the SO2 and fB in different positions along deep brain stimulation (DBS) trajectories and in specific target regions using DRS and a novel algorithm. DRS measurements were done at 166 well-defined anatomical positions in relation to stereotactic DBS-implantation along 20 trajectories toward 4 DBS targets (STN, Vim, GPi and Zi). The measurements were dived into groups (gray, white and light gray matter) related to anatomical position, and DBS targets, before comparison and statistical analysis. The median SO2 in gray, white and light gray matter were 52%, 24% and 20%, respectively. Median fB in gray matter (3.9%) was different from values in white (1.0%, p < 0.05) and light gray (0.9%, p < 0.001) matter. No significant difference in median SO2 and fB was found between DBS target regions. The novel algorithm allows for quick and reliable estimation of SO2 and fB in human brain tissue.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy

Neda Haj-Hosseini, Johan C. O. Richter, Peter Milos, Martin Hallbeck, and Karin Wårdell
Biomed. Opt. Express 9(5) 2284-2296 (2018)

Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors

Hsing-Wen Wang, Jeng-Kai Jiang, Chi-Hung Lin, Jen-Kou Lin, Guang-Jie Huang, and Jia-Sin Yu
Opt. Express 17(4) 2805-2817 (2009)

In-vivo monitoring of tissue oxygen saturation in deep brain structures using a single fiber optical system

Linhui Yu, Ying Wu, Jeff F. Dunn, and Kartikeya Murari
Biomed. Opt. Express 7(11) 4685-4694 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. K. Rohlwink and A. A. Figaji, “Methods of monitoring brain oxygenation,” Childs Nerv. Syst. 26(4), 453–464 (2010).
    [Crossref] [PubMed]
  2. K. Purins, P. Enblad, B. Sandhagen, and A. Lewén, “Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors,” Acta Neurochir. (Wien) 152(4), 681–688 (2010).
    [Crossref] [PubMed]
  3. W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
    [Crossref] [PubMed]
  4. A. Jubran, “Pulse oximetry,” Crit. Care 19(1), 272 (2015).
    [Crossref] [PubMed]
  5. D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
    [Crossref] [PubMed]
  6. P. Rejmstad, J. D. Johansson, N. Haj-Hosseini, and K. Wårdell, “A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy,” J. Biophotonics, in press (2016).
  7. K. Wårdell, “Optical monitoring techniques for navigation during stereotactic neurosurgery,” Sens. Mater. 28, 1105–1116 (2016).
  8. J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
    [Crossref] [PubMed]
  9. C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
    [Crossref] [PubMed]
  10. J. D. Johansson and K. Wårdell, “Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation,” J. Biophotonics 6(5), 435–445 (2013).
    [Crossref] [PubMed]
  11. K. Wårdell, S. Hemm-Ode, P. Rejmstad, and P. Zsigmond, “High-resolution laser Doppler measurements of microcirculation in the deep brain structures: A method for potential vessel tracking,” Stereotact. Funct. Neurosurg. 94(1), 1–9 (2016).
    [Crossref] [PubMed]
  12. K. Wårdell, P. Zsigmond, J. Richter, and S. Hemm, “Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus,” Neurosurgery 72(2), 127–140 (2013).
    [PubMed]
  13. P. Jacobs, “Sterrad 100S, Sterilisation system,” Johnson & Johnson (2006).
  14. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (Taylor & Francis, 2000).
  15. S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
    [Crossref] [PubMed]
  16. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 065- to 25-μm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref] [PubMed]
  17. G. Schaltenbrand and W. Wahren, Atlas for Stereotaxy of the Human Brain (Thieme, 1977).
  18. M. Johns, C. A. Giller, and H. Liu, “Calculation of hemoglobin saturation from in vivo human brain tissues using a modified diffusion theory model,” Proc. SPIE 4254, 194–203 (2001).
    [Crossref]
  19. C. D. Epstein and K. T. Haghenbeck, “Bedside assessment of tissue oxygen saturation monitoring in critically ill adults: an integrative review of the literature,” Crit. Care Res. Pract. 2014, 709683 (2014).
    [Crossref] [PubMed]
  20. B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
    [PubMed]
  21. J. W. Severinghaus, “Simple, accurate equations for human blood O2 dissociation computations,” J. Appl. Physiol. 46(3), 599–602 (1979).
    [PubMed]
  22. W. E. Hoffman, F. T. Charbel, G. Gonzalez-Portillo, and J. I. Ausman, “Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH,” Surg. Neurol. 51(6), 654–658 (1999).
    [Crossref] [PubMed]
  23. J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
    [Crossref] [PubMed]
  24. P. D. Le Roux and M. Oddo, “Parenchymal brain oxygen monitoring in the neurocritical care unit,” Neurosurg. Clin. N. Am. 24(3), 427–439 (2013).
    [Crossref] [PubMed]
  25. A. M. Spiotta, J. J. Provencio, P. A. Rasmussen, and E. Manno, “Brain monitoring after subarachnoid hemorrhage: lessons learned,” Neurosurgery 69(4), 755–766 (2011).
    [Crossref] [PubMed]
  26. P. Rejmstad, G. Åkesson, O. Åneman, and K. Wårdell, “A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery,” Med. Biol. Eng. Comput. 54(1), 123–131 (2016).
    [Crossref] [PubMed]

2017 (1)

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

2016 (4)

K. Wårdell, S. Hemm-Ode, P. Rejmstad, and P. Zsigmond, “High-resolution laser Doppler measurements of microcirculation in the deep brain structures: A method for potential vessel tracking,” Stereotact. Funct. Neurosurg. 94(1), 1–9 (2016).
[Crossref] [PubMed]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

K. Wårdell, “Optical monitoring techniques for navigation during stereotactic neurosurgery,” Sens. Mater. 28, 1105–1116 (2016).

P. Rejmstad, G. Åkesson, O. Åneman, and K. Wårdell, “A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery,” Med. Biol. Eng. Comput. 54(1), 123–131 (2016).
[Crossref] [PubMed]

2015 (2)

A. Jubran, “Pulse oximetry,” Crit. Care 19(1), 272 (2015).
[Crossref] [PubMed]

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

2014 (1)

C. D. Epstein and K. T. Haghenbeck, “Bedside assessment of tissue oxygen saturation monitoring in critically ill adults: an integrative review of the literature,” Crit. Care Res. Pract. 2014, 709683 (2014).
[Crossref] [PubMed]

2013 (3)

K. Wårdell, P. Zsigmond, J. Richter, and S. Hemm, “Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus,” Neurosurgery 72(2), 127–140 (2013).
[PubMed]

J. D. Johansson and K. Wårdell, “Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation,” J. Biophotonics 6(5), 435–445 (2013).
[Crossref] [PubMed]

P. D. Le Roux and M. Oddo, “Parenchymal brain oxygen monitoring in the neurocritical care unit,” Neurosurg. Clin. N. Am. 24(3), 427–439 (2013).
[Crossref] [PubMed]

2011 (1)

A. M. Spiotta, J. J. Provencio, P. A. Rasmussen, and E. Manno, “Brain monitoring after subarachnoid hemorrhage: lessons learned,” Neurosurgery 69(4), 755–766 (2011).
[Crossref] [PubMed]

2010 (3)

J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
[Crossref] [PubMed]

U. K. Rohlwink and A. A. Figaji, “Methods of monitoring brain oxygenation,” Childs Nerv. Syst. 26(4), 453–464 (2010).
[Crossref] [PubMed]

K. Purins, P. Enblad, B. Sandhagen, and A. Lewén, “Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors,” Acta Neurochir. (Wien) 152(4), 681–688 (2010).
[Crossref] [PubMed]

2009 (1)

C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
[Crossref] [PubMed]

2008 (1)

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

2001 (1)

M. Johns, C. A. Giller, and H. Liu, “Calculation of hemoglobin saturation from in vivo human brain tissues using a modified diffusion theory model,” Proc. SPIE 4254, 194–203 (2001).
[Crossref]

1999 (1)

W. E. Hoffman, F. T. Charbel, G. Gonzalez-Portillo, and J. I. Ausman, “Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH,” Surg. Neurol. 51(6), 654–658 (1999).
[Crossref] [PubMed]

1993 (1)

1979 (2)

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[Crossref] [PubMed]

J. W. Severinghaus, “Simple, accurate equations for human blood O2 dissociation computations,” J. Appl. Physiol. 46(3), 599–602 (1979).
[PubMed]

Åkesson, G.

P. Rejmstad, G. Åkesson, O. Åneman, and K. Wårdell, “A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery,” Med. Biol. Eng. Comput. 54(1), 123–131 (2016).
[Crossref] [PubMed]

Åneman, O.

P. Rejmstad, G. Åkesson, O. Åneman, and K. Wårdell, “A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery,” Med. Biol. Eng. Comput. 54(1), 123–131 (2016).
[Crossref] [PubMed]

Antonsson, J.

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

Ausman, J. I.

W. E. Hoffman, F. T. Charbel, G. Gonzalez-Portillo, and J. I. Ausman, “Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH,” Surg. Neurol. 51(6), 654–658 (1999).
[Crossref] [PubMed]

Belli, A.

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Bergenheim, A. T.

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

Bischoff, B.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Blomstedt, P.

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

Buchfelder, M.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Charbel, F. T.

W. E. Hoffman, F. T. Charbel, G. Gonzalez-Portillo, and J. I. Ausman, “Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH,” Surg. Neurol. 51(6), 654–658 (1999).
[Crossref] [PubMed]

Chylek, P.

Clancy, M. T.

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Davies, D. J.

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Dehghani, H.

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Dewey, R. B.

C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
[Crossref] [PubMed]

Enblad, P.

K. Purins, P. Enblad, B. Sandhagen, and A. Lewén, “Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors,” Acta Neurochir. (Wien) 152(4), 681–688 (2010).
[Crossref] [PubMed]

Epstein, C. D.

C. D. Epstein and K. T. Haghenbeck, “Bedside assessment of tissue oxygen saturation monitoring in critically ill adults: an integrative review of the literature,” Crit. Care Res. Pract. 2014, 709683 (2014).
[Crossref] [PubMed]

Eriksson, O.

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

Eyupoglu, I. Y.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Figaji, A. A.

U. K. Rohlwink and A. A. Figaji, “Methods of monitoring brain oxygenation,” Childs Nerv. Syst. 26(4), 453–464 (2010).
[Crossref] [PubMed]

Ganslandt, O.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Gerega, A.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

German, D. C.

C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
[Crossref] [PubMed]

Giller, C. A.

C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
[Crossref] [PubMed]

M. Johns, C. A. Giller, and H. Liu, “Calculation of hemoglobin saturation from in vivo human brain tissues using a modified diffusion theory model,” Proc. SPIE 4254, 194–203 (2001).
[Crossref]

Gonzalez-Portillo, G.

W. E. Hoffman, F. T. Charbel, G. Gonzalez-Portillo, and J. I. Ausman, “Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH,” Surg. Neurol. 51(6), 654–658 (1999).
[Crossref] [PubMed]

Graham, M. D.

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[Crossref] [PubMed]

Haghenbeck, K. T.

C. D. Epstein and K. T. Haghenbeck, “Bedside assessment of tissue oxygen saturation monitoring in critically ill adults: an integrative review of the literature,” Crit. Care Res. Pract. 2014, 709683 (2014).
[Crossref] [PubMed]

Haj-Hosseini, N.

P. Rejmstad, J. D. Johansson, N. Haj-Hosseini, and K. Wårdell, “A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy,” J. Biophotonics, in press (2016).

Hemm, S.

K. Wårdell, P. Zsigmond, J. Richter, and S. Hemm, “Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus,” Neurosurgery 72(2), 127–140 (2013).
[PubMed]

Hemm-Ode, S.

K. Wårdell, S. Hemm-Ode, P. Rejmstad, and P. Zsigmond, “High-resolution laser Doppler measurements of microcirculation in the deep brain structures: A method for potential vessel tracking,” Stereotact. Funct. Neurosurg. 94(1), 1–9 (2016).
[Crossref] [PubMed]

Hoffman, W. E.

W. E. Hoffman, F. T. Charbel, G. Gonzalez-Portillo, and J. I. Ausman, “Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH,” Surg. Neurol. 51(6), 654–658 (1999).
[Crossref] [PubMed]

I Hariz, M.

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

Janusek, D.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Johansson, J. D.

J. D. Johansson and K. Wårdell, “Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation,” J. Biophotonics 6(5), 435–445 (2013).
[Crossref] [PubMed]

J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
[Crossref] [PubMed]

P. Rejmstad, J. D. Johansson, N. Haj-Hosseini, and K. Wårdell, “A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy,” J. Biophotonics, in press (2016).

Johns, M.

M. Johns, C. A. Giller, and H. Liu, “Calculation of hemoglobin saturation from in vivo human brain tissues using a modified diffusion theory model,” Proc. SPIE 4254, 194–203 (2001).
[Crossref]

Jubran, A.

A. Jubran, “Pulse oximetry,” Crit. Care 19(1), 272 (2015).
[Crossref] [PubMed]

Kacprzak, M.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Kashyap, D.

C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
[Crossref] [PubMed]

Kou, L.

Kreuzer, M.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Labrie, D.

Le Roux, P. D.

P. D. Le Roux and M. Oddo, “Parenchymal brain oxygen monitoring in the neurocritical care unit,” Neurosurg. Clin. N. Am. 24(3), 427–439 (2013).
[Crossref] [PubMed]

Lewén, A.

K. Purins, P. Enblad, B. Sandhagen, and A. Lewén, “Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors,” Acta Neurochir. (Wien) 152(4), 681–688 (2010).
[Crossref] [PubMed]

Liebert, A.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Liu, H.

C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
[Crossref] [PubMed]

M. Johns, C. A. Giller, and H. Liu, “Calculation of hemoglobin saturation from in vivo human brain tissues using a modified diffusion theory model,” Proc. SPIE 4254, 194–203 (2001).
[Crossref]

Logan, A.

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Lucas, S. J.

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Maniewski, R.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Manno, E.

A. M. Spiotta, J. J. Provencio, P. A. Rasmussen, and E. Manno, “Brain monitoring after subarachnoid hemorrhage: lessons learned,” Neurosurgery 69(4), 755–766 (2011).
[Crossref] [PubMed]

Milej, D.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Oddo, M.

P. D. Le Roux and M. Oddo, “Parenchymal brain oxygen monitoring in the neurocritical care unit,” Neurosurg. Clin. N. Am. 24(3), 427–439 (2013).
[Crossref] [PubMed]

Provencio, J. J.

A. M. Spiotta, J. J. Provencio, P. A. Rasmussen, and E. Manno, “Brain monitoring after subarachnoid hemorrhage: lessons learned,” Neurosurgery 69(4), 755–766 (2011).
[Crossref] [PubMed]

Purins, K.

K. Purins, P. Enblad, B. Sandhagen, and A. Lewén, “Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors,” Acta Neurochir. (Wien) 152(4), 681–688 (2010).
[Crossref] [PubMed]

Rasmussen, P. A.

A. M. Spiotta, J. J. Provencio, P. A. Rasmussen, and E. Manno, “Brain monitoring after subarachnoid hemorrhage: lessons learned,” Neurosurgery 69(4), 755–766 (2011).
[Crossref] [PubMed]

Rejmstad, P.

P. Rejmstad, G. Åkesson, O. Åneman, and K. Wårdell, “A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery,” Med. Biol. Eng. Comput. 54(1), 123–131 (2016).
[Crossref] [PubMed]

K. Wårdell, S. Hemm-Ode, P. Rejmstad, and P. Zsigmond, “High-resolution laser Doppler measurements of microcirculation in the deep brain structures: A method for potential vessel tracking,” Stereotact. Funct. Neurosurg. 94(1), 1–9 (2016).
[Crossref] [PubMed]

P. Rejmstad, J. D. Johansson, N. Haj-Hosseini, and K. Wårdell, “A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy,” J. Biophotonics, in press (2016).

Richter, J.

K. Wårdell, P. Zsigmond, J. Richter, and S. Hemm, “Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus,” Neurosurgery 72(2), 127–140 (2013).
[PubMed]

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

Rohlwink, U. K.

U. K. Rohlwink and A. A. Figaji, “Methods of monitoring brain oxygenation,” Childs Nerv. Syst. 26(4), 453–464 (2010).
[Crossref] [PubMed]

Rössler, K.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Sandhagen, B.

K. Purins, P. Enblad, B. Sandhagen, and A. Lewén, “Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors,” Acta Neurochir. (Wien) 152(4), 681–688 (2010).
[Crossref] [PubMed]

Sawosz, P.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Schmitt, H.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Severinghaus, J. W.

J. W. Severinghaus, “Simple, accurate equations for human blood O2 dissociation computations,” J. Appl. Physiol. 46(3), 599–602 (1979).
[PubMed]

Sommer, B.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Spiotta, A. M.

A. M. Spiotta, J. J. Provencio, P. A. Rasmussen, and E. Manno, “Brain monitoring after subarachnoid hemorrhage: lessons learned,” Neurosurgery 69(4), 755–766 (2011).
[Crossref] [PubMed]

Su, Z.

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Takatani, S.

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[Crossref] [PubMed]

Wårdell, K.

K. Wårdell, S. Hemm-Ode, P. Rejmstad, and P. Zsigmond, “High-resolution laser Doppler measurements of microcirculation in the deep brain structures: A method for potential vessel tracking,” Stereotact. Funct. Neurosurg. 94(1), 1–9 (2016).
[Crossref] [PubMed]

K. Wårdell, “Optical monitoring techniques for navigation during stereotactic neurosurgery,” Sens. Mater. 28, 1105–1116 (2016).

P. Rejmstad, G. Åkesson, O. Åneman, and K. Wårdell, “A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery,” Med. Biol. Eng. Comput. 54(1), 123–131 (2016).
[Crossref] [PubMed]

K. Wårdell, P. Zsigmond, J. Richter, and S. Hemm, “Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus,” Neurosurgery 72(2), 127–140 (2013).
[PubMed]

J. D. Johansson and K. Wårdell, “Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation,” J. Biophotonics 6(5), 435–445 (2013).
[Crossref] [PubMed]

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

P. Rejmstad, J. D. Johansson, N. Haj-Hosseini, and K. Wårdell, “A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy,” J. Biophotonics, in press (2016).

Weigl, W.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Wiendieck, K.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Wojtkiewicz, S.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

Wolf, D.

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

Zsigmond, P.

K. Wårdell, S. Hemm-Ode, P. Rejmstad, and P. Zsigmond, “High-resolution laser Doppler measurements of microcirculation in the deep brain structures: A method for potential vessel tracking,” Stereotact. Funct. Neurosurg. 94(1), 1–9 (2016).
[Crossref] [PubMed]

K. Wårdell, P. Zsigmond, J. Richter, and S. Hemm, “Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus,” Neurosurgery 72(2), 127–140 (2013).
[PubMed]

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

Acta Neurochir. (Wien) (1)

K. Purins, P. Enblad, B. Sandhagen, and A. Lewén, “Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors,” Acta Neurochir. (Wien) 152(4), 681–688 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Childs Nerv. Syst. (1)

U. K. Rohlwink and A. A. Figaji, “Methods of monitoring brain oxygenation,” Childs Nerv. Syst. 26(4), 453–464 (2010).
[Crossref] [PubMed]

Crit. Care (1)

A. Jubran, “Pulse oximetry,” Crit. Care 19(1), 272 (2015).
[Crossref] [PubMed]

Crit. Care Res. Pract. (1)

C. D. Epstein and K. T. Haghenbeck, “Bedside assessment of tissue oxygen saturation monitoring in critically ill adults: an integrative review of the literature,” Crit. Care Res. Pract. 2014, 709683 (2014).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. Takatani and M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26(12), 656–664 (1979).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

J. W. Severinghaus, “Simple, accurate equations for human blood O2 dissociation computations,” J. Appl. Physiol. 46(3), 599–602 (1979).
[PubMed]

J. Biomed. Opt. (1)

J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

J. D. Johansson and K. Wårdell, “Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation,” J. Biophotonics 6(5), 435–445 (2013).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref] [PubMed]

J. Neural Eng. (1)

J. Antonsson, O. Eriksson, P. Blomstedt, A. T. Bergenheim, M. I Hariz, J. Richter, P. Zsigmond, and K. Wårdell, “Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation,” J. Neural Eng. 5(2), 185–190 (2008).
[Crossref] [PubMed]

J. Neurol. Surg. A Cent. Eur. Neurosurg. (1)

B. Sommer, M. Kreuzer, B. Bischoff, D. Wolf, H. Schmitt, I. Y. Eyupoglu, K. Rössler, M. Buchfelder, O. Ganslandt, and K. Wiendieck, “Combined laser-Doppler flowmetry and spectrophotometry: Feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery,” J. Neurol. Surg. A Cent. Eur. Neurosurg. 78(1), 1–11 (2017).
[PubMed]

J. Neurosurg. (1)

C. A. Giller, H. Liu, D. C. German, D. Kashyap, and R. B. Dewey., “A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience,” J. Neurosurg. 110(2), 263–273 (2009).
[Crossref] [PubMed]

J. Neurotrauma (1)

D. J. Davies, Z. Su, M. T. Clancy, S. J. Lucas, H. Dehghani, A. Logan, and A. Belli, “Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: A review,” J. Neurotrauma 32(13), 933–941 (2015).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

P. Rejmstad, G. Åkesson, O. Åneman, and K. Wårdell, “A laser Doppler system for monitoring cerebral microcirculation: implementation and evaluation during neurosurgery,” Med. Biol. Eng. Comput. 54(1), 123–131 (2016).
[Crossref] [PubMed]

Neurosurg. Clin. N. Am. (1)

P. D. Le Roux and M. Oddo, “Parenchymal brain oxygen monitoring in the neurocritical care unit,” Neurosurg. Clin. N. Am. 24(3), 427–439 (2013).
[Crossref] [PubMed]

Neurosurgery (2)

A. M. Spiotta, J. J. Provencio, P. A. Rasmussen, and E. Manno, “Brain monitoring after subarachnoid hemorrhage: lessons learned,” Neurosurgery 69(4), 755–766 (2011).
[Crossref] [PubMed]

K. Wårdell, P. Zsigmond, J. Richter, and S. Hemm, “Relationship between laser Doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus,” Neurosurgery 72(2), 127–140 (2013).
[PubMed]

Proc. SPIE (1)

M. Johns, C. A. Giller, and H. Liu, “Calculation of hemoglobin saturation from in vivo human brain tissues using a modified diffusion theory model,” Proc. SPIE 4254, 194–203 (2001).
[Crossref]

Sens. Mater. (1)

K. Wårdell, “Optical monitoring techniques for navigation during stereotactic neurosurgery,” Sens. Mater. 28, 1105–1116 (2016).

Stereotact. Funct. Neurosurg. (1)

K. Wårdell, S. Hemm-Ode, P. Rejmstad, and P. Zsigmond, “High-resolution laser Doppler measurements of microcirculation in the deep brain structures: A method for potential vessel tracking,” Stereotact. Funct. Neurosurg. 94(1), 1–9 (2016).
[Crossref] [PubMed]

Surg. Neurol. (1)

W. E. Hoffman, F. T. Charbel, G. Gonzalez-Portillo, and J. I. Ausman, “Measurement of ischemia by changes in tissue oxygen, carbon dioxide, and pH,” Surg. Neurol. 51(6), 654–658 (1999).
[Crossref] [PubMed]

Other (4)

P. Jacobs, “Sterrad 100S, Sterilisation system,” Johnson & Johnson (2006).

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (Taylor & Francis, 2000).

G. Schaltenbrand and W. Wahren, Atlas for Stereotaxy of the Human Brain (Thieme, 1977).

P. Rejmstad, J. D. Johansson, N. Haj-Hosseini, and K. Wårdell, “A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy,” J. Biophotonics, in press (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) Deep brain stimulation trajectory toward a target along which spectra were collected, b) axial MRI slice of the STN target region, c) DRS spectrum from gray matter and d) DRS spectrum from light gray matter
Fig. 2
Fig. 2 Spectral fit for the SO2 estimation algorithm a) region between 545 and 573 nm (gray-shaded) and normalization wavelength, quadratic fit (marked in red) for b) a HbO2 dominated spectrum and c) a Hb dominated spectrum
Fig. 3
Fig. 3 Examples of spectra along the DBS trajectories in a) gray matter with high SO2 and fB, b) white matter with lower SO2 and fB and c) light gray matter with low SO2 and fB
Fig. 4
Fig. 4 Boxplots of estimated values in gray, white and light gray brain tissue for a) oxygen saturation (SO2), b) blood fraction (fB) and c) normalized light intensity at 780 nm (Inorm,780)
Fig. 5
Fig. 5 Boxplots of the estimated parameters for DBS targets: STN, Vim and GPi with a) oxygen saturation (SO2) and b) blood fraction (fB) and c) normalized light intensity at 780 nm (Inorm,780)
Fig. 6
Fig. 6 Boxplots of the estimated parameters for DBS patients 1 to 11 for a) oxygen saturation (SO2) and b) blood fraction (fB) and c) normalized light intensity at 780 nm (Inorm,780)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I norm = I raw I white
I=α λ 2 +βλ+γ
f B =k 1 ( I λ=548 + I λ=570 + I λ=586 ) /3 + m 1
S O 2 = C f B D f B +E α+ m 2

Metrics