Abstract

We designed, fabricated, and characterized a thin metalens in an amorphous silicon film of diameter 30 µm, focal length equal to the incident wavelength 633 nm. The lens is capable of simultaneously manipulating the state of polarization and phase of incident light. The lens converts a linearly polarized beam into radially polarized light, producing a subwavelength focus. When illuminated with a linearly polarized Gaussian beam, the lens produces a focal spot whose size at full-width half-maximum intensity is 0.49λ and 0.55λ (λ is incident wavelength). The experimental results are in good agreement with the numerical simulation, with the simulated focal spot measuring 0.46λ and 0.52λ. This focal spot is less than all other focal spots obtained using metalenses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microlens-aided focusing of linearly and azimuthally polarized laser light

S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, D. Gibson, S. Song, L. O’Faolain, and V. V. Kotlyar
Opt. Express 24(26) 29800-29813 (2016)

Tight focusing of laser light using a chromium Fresnel zone plate

V. V. Kotlyar, S. S. Stafeev, A. G. Nalimov, M. V. Kotlyar, L. O’Faolain, and E. S. Kozlova
Opt. Express 25(17) 19662-19671 (2017)

High numerical aperture multifocal metalens based on Pancharatnam–Berry phase optical elements

Qinmiao Chen, Yan Li, Yanhua Han, Duo Deng, Dahai Yang, Ying Zhang, Yi Liu, and Jianmin Gao
Appl. Opt. 57(27) 7891-7894 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38(17), 3410–3413 (2013).
    [Crossref] [PubMed]
  2. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  3. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  4. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  5. L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
    [Crossref]
  6. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [Crossref] [PubMed]
  7. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  8. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref] [PubMed]
  9. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  10. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  11. P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
    [Crossref] [PubMed]
  12. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  13. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
    [Crossref] [PubMed]
  14. S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
    [Crossref]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  16. A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
    [Crossref]
  17. S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
    [Crossref] [PubMed]
  18. S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
    [Crossref]

2016 (1)

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

2015 (3)

S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

2014 (5)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
[Crossref]

P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

2013 (5)

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
[Crossref]

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38(17), 3410–3413 (2013).
[Crossref] [PubMed]

2012 (2)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

2009 (1)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Byren, R.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Chen, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Dodds, R. K.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Faraon, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Guo, G. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

He, Q.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Huyet, G.

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jiang, W.

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Juan, T. K.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Kildishev, A. V.

Klemm, A. B.

Kotlyar, M. V.

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

Kotlyar, V. V.

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
[Crossref] [PubMed]

A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
[Crossref]

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
[Crossref]

Kovalev, A. A.

Krauss, T. F.

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kung, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lan, L.

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Lewis, L.

Liao, C. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Liu, Y.

Ma, Y.

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Martins, E. R.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Nalimov, A. G.

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
[Crossref] [PubMed]

A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
[Crossref]

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

O’Faolain, L.

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
[Crossref] [PubMed]

A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
[Crossref]

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38(17), 3410–3413 (2013).
[Crossref] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Shalaev, V. M.

Shanina, M. I.

A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
[Crossref]

Shkunov, V. V.

Stafeev, S. S.

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

S. S. Stafeev, L. O’Faolain, V. V. Kotlyar, and A. G. Nalimov, “Tight focus of light using micropolarizer and microlens,” Appl. Opt. 54(14), 4388–4394 (2015).
[Crossref] [PubMed]

A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
[Crossref]

S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
[Crossref]

V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt. 52(3), 330–339 (2013).
[Crossref] [PubMed]

Stellinga, D.

Stewart, J. L.

Strohkendl, F.

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Tsai, D. P.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Wang, C. M.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

West, P. R.

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Xiao, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Zakharenkov, Y. A.

Zhou, L.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Comput. Opt. (2)

S. S. Stafeev, M. V. Kotlyar, L. O’Faolain, A. G. Nalimov, and V. V. Kotlyar, “A four-zone transmission azimuthal micropolarizer with phase shift,” Comput. Opt. 40(1), 12–18 (2016).
[Crossref]

A. G. Nalimov, L. O’Faolain, S. S. Stafeev, M. I. Shanina, and V. V. Kotlyar, “Reflected four-zones subwavelength microoptic element for polarization conversion from linear to radial,” Comput. Opt. 38(2), 229–236 (2014).
[Crossref]

J. Mod. Opt. (1)

S. S. Stafeev, V. V. Kotlyar, and L. O’Faolain, “Subwavelength focusing of laser light by microoptics,” J. Mod. Opt. 60(13), 1050–1059 (2013).
[Crossref]

Light Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nano Lett. (4)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Science (1)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (а) The arrangement of rings of a binary zone plate that was used to calculate tightly focusing a linearly polarized Gaussian beam; (b) Intensity distribution in the focal plane (at a distance of 200 nm).
Fig. 2
Fig. 2 (а) The layout of a four-sector micropolarizer composed of four subwavelength binary diffraction gratings with period 460 nm (for the incident wavelength of 633 nm) in a golden film and (b) the near-surface intensity distribution of the reflected light. Arrows show the polarization direction in each sector.
Fig. 3
Fig. 3 The layout of the grooves of a transmission binary metalens that is capable of simultaneously converting the linear polarization into the radial one and generating a tight focal spot.
Fig. 4
Fig. 4 FWHMx (dashed curve)- the focal spot size in full width at half maximum along the x-axis, generated at distance z from the microrelief's upper surface, FWHMy (solid curve) - a similar estimate for the y-axis. Imax (dotted curve)- the on-axis intensity as a function of distance z. The metalens relief height - 70 nm.
Fig. 5
Fig. 5 Intensity distribution | E | 2 at distance z = 0.391 µm. Dashed line- along the x-axis, solid line- along the y-axis.
Fig. 6
Fig. 6 (a) An electron microscope image of a metalens in an a-Si film of diameter 30 µm and (b) its magnified 3x2-µm central fragment.
Fig. 7
Fig. 7 (а) An AFM image of the central part of the metalens microrelief, obtained by Solver Pro microscope and (b) an example of the metalens relief profile.
Fig. 8
Fig. 8 (a) Gray-level microrelief, with black corresponding to zero height and white - to a height of 189 nm, which exactly corresponds to the image of a real metalens relief in Fig. 7(a) incorporated in Fullwave for modeling, (b) the simulated intensity pattern generated by the metalens of Fig. 8(a). The pattern in Fig. 8(b) has a size of 6х6 µm. (c) The focal intensity profile for | E | 2 along the x- and y-axes.
Fig. 9
Fig. 9 Experimental optical arrangement. M1, M2– mirrors, O1– a 100 × objective, C – a probe, S– a spectrometer, and CCD– a CCD-camera.
Fig. 10
Fig. 10 Intensity pattern at distance z = 0.6 µm from the metalens (Fig. 6).
Fig. 11
Fig. 11 Measured intensity profiles of the focal spot (Fig. 10) along x- (a) and y-axis (b). Red crosses mark experimental values and black curve presents a polynomial-based approximation.

Metrics