Abstract

In this paper, we present a focused femtosecond laser Bessel beam scanning technique for the rapid fabrication of large-area 3D complex microtube arrays. The femtosecond laser beam is converted into several Bessel beams by two-dimensional phase modulation using a spatial light modulator. By scanning the focused Bessel beam along a designed route, microtubes with variable size and flexible geometry are rapidly fabricated by two-photon polymerization. The fabrication time is reduced by two orders of magnitude in comparison with conventional point-to-point scanning. Moreover, we construct an effective microoperating system for single cell manipulation using microtube arrays, and demonstrate its use in the capture, transfer, and release of embryonic fibroblast mouse cells as well as human breast cancer cells. The new fabrication strategy provides a novel method for the rapid fabrication of functional devices using a flexibly tailored laser beam.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication

Bing Xu, Wenjin Hu, Wenqiang Du, Yanlei Hu, Chenchu Zhang, Zhaoxin Lao, Jincheng Ni, Jiawen Li, Dong Wu, Jiaru Chu, and Koji Sugioka
Opt. Express 25(14) 16739-16753 (2017)

A rapid two-photon fabrication of tube array using an annular Fresnel lens

Chenchu Zhang, Yanlei Hu, Jiawen Li, Guoqiang Li, Jiaru Chu, and Wenhao Huang
Opt. Express 22(4) 3983-3990 (2014)

Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms

Gaszton Vizsnyiczai, Lóránd Kelemen, and Pál Ormos
Opt. Express 22(20) 24217-24223 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Yan, M. M. Hossain, and M. Gu, “High light-directing micrometer-sized parabolic mirror arrays,” Opt. Lett. 38(16), 3177–3180 (2013).
    [Crossref] [PubMed]
  2. J. A. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
    [Crossref]
  3. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
    [Crossref] [PubMed]
  4. S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
    [Crossref] [PubMed]
  5. K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
    [Crossref] [PubMed]
  6. Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
    [Crossref] [PubMed]
  7. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [Crossref] [PubMed]
  8. D. J. Thurmer, C. Deneke, Y. F. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
    [Crossref]
  9. Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40(5), 2109–2119 (2011).
    [Crossref] [PubMed]
  10. F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
    [Crossref] [PubMed]
  11. A. Martín, B. Jurado-Sánchez, A. Escarpa, and J. Wang, “Template electrosynthesis of high-performance graphene microengines,” Small 11(29), 3568–3574 (2015).
    [Crossref] [PubMed]
  12. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
    [Crossref] [PubMed]
  13. S. Sánchez, “Lab-in-a-tube systems as ultra-compact devices,” Lab Chip 15(3), 610–613 (2015).
    [Crossref] [PubMed]
  14. C. S. Martinez-Cisneros, S. Sanchez, W. Xi, and O. G. Schmidt, “Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications,” Nano Lett. 14(4), 2219–2224 (2014).
    [Crossref] [PubMed]
  15. W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
    [Crossref] [PubMed]
  16. G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
    [Crossref] [PubMed]
  17. S. Zakharchenko, E. Sperling, and L. Ionov, “Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds,” Biomacromolecules 12(6), 2211–2215 (2011).
    [Crossref] [PubMed]
  18. A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
    [Crossref] [PubMed]
  19. K. H. Won, B. M. Weon, and J. H. Je, “Polymer composite microtube array produced by meniscus-guided approach,” AIP Adv. 3(9), 092127 (2013).
    [Crossref]
  20. A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
    [Crossref] [PubMed]
  21. X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
    [Crossref]
  22. W. Gao and J. Wang, “The environmental impact of micro/nanomachines: a review,” ACS Nano 8(4), 3170–3180 (2014).
    [Crossref] [PubMed]
  23. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
    [Crossref]
  24. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
    [Crossref]
  25. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
    [Crossref]
  26. C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
    [Crossref] [PubMed]
  27. J. A. Davis, E. Carcole, and D. M. Cottrell, “Nondiffracting interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35(4), 599–602 (1996).
    [Crossref] [PubMed]
  28. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28(22), 2183–2185 (2003).
    [Crossref] [PubMed]
  29. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  30. M. Pospiech, M. Emons, B. Väckenstedt, G. Palmer, and U. Morgner, “Single-sweep laser writing of 3D-waveguide devices,” Opt. Express 18(7), 6994–7001 (2010).
    [Crossref] [PubMed]
  31. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27(19), 3959–3962 (1988).
    [Crossref] [PubMed]
  32. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989).
    [Crossref] [PubMed]
  33. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
    [Crossref]
  34. M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A 10(3), 035005 (2008).
    [Crossref]
  35. C. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. A. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel-Gauss vortex beams,” J. Opt. Soc. Am. A 32(7), 1313–1316 (2015).
    [Crossref] [PubMed]
  36. C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
    [Crossref] [PubMed]
  37. W. Cheng and P. Polynkin, “Micromachining of borosilicate glass surfaces using femtosecond higher-order Bessel beams,” J. Opt. Soc. Am. B 31(11), C48–C52 (2014).
    [Crossref]
  38. X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
    [Crossref]
  39. J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
    [Crossref] [PubMed]
  40. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
    [Crossref] [PubMed]
  41. K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
    [Crossref]
  42. M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
    [Crossref] [PubMed]
  43. C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
    [Crossref] [PubMed]
  44. L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
    [Crossref] [PubMed]
  45. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
    [Crossref] [PubMed]
  46. B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
    [Crossref] [PubMed]
  47. M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
    [Crossref] [PubMed]
  48. S. Chung and K. Vafai, “Effect of the fluid-structure interactions on low-density lipoprotein transport within a multi-layered arterial wall,” J. Biomech. 45(2), 371–381 (2012).
    [Crossref] [PubMed]
  49. S. Bashir, J. Rees, and W. Zimmerman, “Simulations of microfluidic droplet formation using the two-phase level set method,” Chem. Eng. Sci. 66(20), 4733–4741 (2011).
    [Crossref]
  50. O. Thoumine and A. Ott, “Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,” J. Cell Sci. 110(Pt 17), 2109–2116 (1997).
    [PubMed]
  51. S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
    [Crossref] [PubMed]
  52. P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
    [Crossref] [PubMed]
  53. N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature 432(7015), 332–337 (2004).
    [Crossref] [PubMed]
  54. R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
    [Crossref] [PubMed]
  55. E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
    [Crossref] [PubMed]
  56. D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
    [Crossref]
  57. D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
    [Crossref]
  58. D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
    [Crossref] [PubMed]

2016 (1)

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

2015 (8)

C. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. A. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel-Gauss vortex beams,” J. Opt. Soc. Am. A 32(7), 1313–1316 (2015).
[Crossref] [PubMed]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

A. Martín, B. Jurado-Sánchez, A. Escarpa, and J. Wang, “Template electrosynthesis of high-performance graphene microengines,” Small 11(29), 3568–3574 (2015).
[Crossref] [PubMed]

S. Sánchez, “Lab-in-a-tube systems as ultra-compact devices,” Lab Chip 15(3), 610–613 (2015).
[Crossref] [PubMed]

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

2014 (7)

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

C. S. Martinez-Cisneros, S. Sanchez, W. Xi, and O. G. Schmidt, “Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications,” Nano Lett. 14(4), 2219–2224 (2014).
[Crossref] [PubMed]

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

W. Cheng and P. Polynkin, “Micromachining of borosilicate glass surfaces using femtosecond higher-order Bessel beams,” J. Opt. Soc. Am. B 31(11), C48–C52 (2014).
[Crossref]

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

W. Gao and J. Wang, “The environmental impact of micro/nanomachines: a review,” ACS Nano 8(4), 3170–3180 (2014).
[Crossref] [PubMed]

C. Zhang, Y. Hu, J. Li, G. Li, J. Chu, and W. Huang, “A rapid two-photon fabrication of tube array using an annular Fresnel lens,” Opt. Express 22(4), 3983–3990 (2014).
[Crossref] [PubMed]

2013 (5)

K. H. Won, B. M. Weon, and J. H. Je, “Polymer composite microtube array produced by meniscus-guided approach,” AIP Adv. 3(9), 092127 (2013).
[Crossref]

Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
[Crossref] [PubMed]

W. Yan, M. M. Hossain, and M. Gu, “High light-directing micrometer-sized parabolic mirror arrays,” Opt. Lett. 38(16), 3177–3180 (2013).
[Crossref] [PubMed]

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

2012 (7)

S. Chung and K. Vafai, “Effect of the fluid-structure interactions on low-density lipoprotein transport within a multi-layered arterial wall,” J. Biomech. 45(2), 371–381 (2012).
[Crossref] [PubMed]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

2011 (6)

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40(5), 2109–2119 (2011).
[Crossref] [PubMed]

S. Zakharchenko, E. Sperling, and L. Ionov, “Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds,” Biomacromolecules 12(6), 2211–2215 (2011).
[Crossref] [PubMed]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

S. Bashir, J. Rees, and W. Zimmerman, “Simulations of microfluidic droplet formation using the two-phase level set method,” Chem. Eng. Sci. 66(20), 4733–4741 (2011).
[Crossref]

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

2010 (6)

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

J. A. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

M. Pospiech, M. Emons, B. Väckenstedt, G. Palmer, and U. Morgner, “Single-sweep laser writing of 3D-waveguide devices,” Opt. Express 18(7), 6994–7001 (2010).
[Crossref] [PubMed]

X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

2009 (4)

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

2008 (1)

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A 10(3), 035005 (2008).
[Crossref]

2007 (1)

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

2006 (3)

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[Crossref] [PubMed]

D. J. Thurmer, C. Deneke, Y. F. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

2005 (1)

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

2004 (1)

N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature 432(7015), 332–337 (2004).
[Crossref] [PubMed]

2003 (1)

1997 (2)

O. Thoumine and A. Ott, “Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,” J. Cell Sci. 110(Pt 17), 2109–2116 (1997).
[PubMed]

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

1996 (2)

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

J. A. Davis, E. Carcole, and D. M. Cottrell, “Nondiffracting interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35(4), 599–602 (1996).
[Crossref] [PubMed]

1989 (1)

1988 (1)

Albertson, D. G.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Baehner, F. L.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Bashir, S.

S. Bashir, J. Rees, and W. Zimmerman, “Simulations of microfluidic droplet formation using the two-phase level set method,” Chem. Eng. Sci. 66(20), 4733–4741 (2011).
[Crossref]

Bayani, N.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A 10(3), 035005 (2008).
[Crossref]

Bertucci, F.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Bhowmick, N. A.

N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature 432(7015), 332–337 (2004).
[Crossref] [PubMed]

Birnbaum, D.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Bornens, M.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Bratchikov, M.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Brenner, M. D.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Brown, M.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Bückmann, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Bueno, J.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Carazo-Salas, R. E.

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

Carcole, E.

Cervera, N.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Charafe-Jauffret, E.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Chattrapiban, N.

Chen, C.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

Chen, C. S.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Chen, Y.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Cheng, W.

Chichkov, B.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Chichkov, B. N.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Chin, K.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Chisholm, B.

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Chu, J.

Chung, S.

S. Chung and K. Vafai, “Effect of the fluid-structure interactions on low-density lipoprotein transport within a multi-layered arterial wall,” J. Biomech. 45(2), 371–381 (2012).
[Crossref] [PubMed]

Clark, L.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Clarke, M. F.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Clevers, H.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Cofield, D.

Coppe, J. P.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Coric, E.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

Cottrell, D. M.

Couairon, A.

C. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. A. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel-Gauss vortex beams,” J. Opt. Soc. Am. A 32(7), 1313–1316 (2015).
[Crossref] [PubMed]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Courvoisier, F.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. A. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel-Gauss vortex beams,” J. Opt. Soc. Am. A 32(7), 1313–1316 (2015).
[Crossref] [PubMed]

Cross, S. E.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Dalerba, P.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Darinskas, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Daunoras, G.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Davis, J. A.

Deneke, C.

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

D. J. Thurmer, C. Deneke, Y. F. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Deveikyte, M.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

DeVries, S.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Dickson, R. B.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Diebel, M. E.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Dong, H. T.

J. A. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

Dontu, G.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Dudley, J.

Dudley, J. M.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Dutcher, J.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Eberl, C.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

El-Tamer, A.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Emons, M.

Escarpa, A.

A. Martín, B. Jurado-Sánchez, A. Escarpa, and J. Wang, “Template electrosynthesis of high-performance graphene microengines,” Small 11(29), 3568–3574 (2015).
[Crossref] [PubMed]

Ethier, S.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Fan, L.

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

Fang, W.

J. A. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

Feng, C.

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

Fernandes, R.

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Fevr, T.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Finetti, P.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Friberg, A. T.

Fridlyand, J.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Froehly, L.

Frölich, A.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Fu, J. A.

J. A. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

Furfaro, L.

Gadonas, R.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gao, W.

W. Gao and J. Wang, “The environmental impact of micro/nanomachines: a review,” ACS Nano 8(4), 3170–3180 (2014).
[Crossref] [PubMed]

Gao, Y.

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

Gazdar, A.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Gedvilas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gertus, T.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gimzewski, J. K.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Ginestier, C.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Gittard, S. D.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Giust, R.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. A. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel-Gauss vortex beams,” J. Opt. Soc. Am. A 32(7), 1313–1316 (2015).
[Crossref] [PubMed]

Gracias, D. H.

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

Grashoff, C.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Gray, J. W.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Gu, M.

Guan, J.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

Gudas, R.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Ha, T.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Hao, X.

X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Harazim, S. M.

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

Heitmann, D.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[Crossref] [PubMed]

Hess, H.

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Heyn, Ch.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[Crossref] [PubMed]

Hill, W. T.

Hinze, U.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Hisamori, S.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Hoffman, B. D.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Hong, M. H.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Hossain, M. M.

Hu, Y.

Huang, G.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

Huang, S.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Huang, W.

Hur, M. H.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Ingber, D. E.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Ionov, L.

S. Zakharchenko, E. Sperling, and L. Ionov, “Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds,” Biomacromolecules 12(6), 2211–2215 (2011).
[Crossref] [PubMed]

Iovino, F.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Ishida, M.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Itina, T.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Jackson, S. P.

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

Jacquot, M.

Jamal, M.

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Je, J. H.

K. H. Won, B. M. Weon, and J. H. Je, “Polymer composite microtube array produced by meniscus-guided approach,” AIP Adv. 3(9), 092127 (2013).
[Crossref]

Jiang, X.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Jin, C.

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Jin, Y.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Jin, Y.-S.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Jivan, F.

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Johnson, M. D.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Johnston, D. M.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Jukna, V.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. A. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel-Gauss vortex beams,” J. Opt. Soc. Am. A 32(7), 1313–1316 (2015).
[Crossref] [PubMed]

Jurado-Sánchez, B.

A. Martín, B. Jurado-Sánchez, A. Escarpa, and J. Wang, “Template electrosynthesis of high-performance graphene microengines,” Small 11(29), 3568–3574 (2015).
[Crossref] [PubMed]

Kadam, S. S.

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Kadic, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Kalisky, T.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Kaneko, H.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Kaschke, J.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Kawano, T.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Kawashima, T.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Kennerknecht, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Kipp, T.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[Crossref] [PubMed]

Kiravittaya, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Koch, L.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Koroleva, A.

Kuang, C. F.

X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Kuo, W. L.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Lacourt, P. A.

Lahann, J.

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Lapuk, A.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Laurinaviciene, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Laurinavicius, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Lee, C.

Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
[Crossref] [PubMed]

Leyrat, A. A.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Li, G.

Li, J.

Li, W.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

Li, Y.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

Liao, G. L.

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

Lippman, M.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Liu, X.

X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Ma, H.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

Maciulaitis, J.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Maciulaitis, R.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Malinauskas, M.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Martín, A.

A. Martín, B. Jurado-Sánchez, A. Escarpa, and J. Wang, “Template electrosynthesis of high-performance graphene microengines,” Small 11(29), 3568–3574 (2015).
[Crossref] [PubMed]

Martinez-Cisneros, C. S.

C. S. Martinez-Cisneros, S. Sanchez, W. Xi, and O. G. Schmidt, “Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications,” Nano Lett. 14(4), 2219–2224 (2014).
[Crossref] [PubMed]

McCormick, F.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

McDonald, K. T.

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A 10(3), 035005 (2008).
[Crossref]

McLean, M. A.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Mei, Y.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40(5), 2109–2119 (2011).
[Crossref] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

Mei, Y. F.

D. J. Thurmer, C. Deneke, Y. F. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Midorikawa, K.

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Milián, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Miller, D.

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Monteiro-Riviere, N. A.

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Monville, F.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Morgner, U.

Moses, H. L.

N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature 432(7015), 332–337 (2004).
[Crossref] [PubMed]

Mou, F.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

Mrksich, M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Narayan, R. J.

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Neff, N. F.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Neilson, E. G.

N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature 432(7015), 332–337 (2004).
[Crossref] [PubMed]

Neve, R. M.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Nguyen, A.

Nguyen, T. D.

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Niu, L. G.

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Obata, K.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

Okamoto, J.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Onn, T.-M.

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Ott, A.

O. Thoumine and A. Ott, “Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,” J. Cell Sci. 110(Pt 17), 2109–2116 (1997).
[PubMed]

Ouadghiri-Idrissi, I.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Ovsianikov, A.

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Palmer, G.

Pant, A.

Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
[Crossref] [PubMed]

Parsons, M.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Pastorin, G.

Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
[Crossref] [PubMed]

Paterson, C.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

Pépin, A.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Piel, M.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Pinkel, D.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Polynkin, P.

Pospiech, M.

Qian, D.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Qian, L.

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

Quake, S. R.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Racine, V.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Raciukaitis, G.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Rajendran, P. S.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Rao, J.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Rees, J.

S. Bashir, J. Rees, and W. Zimmerman, “Simulations of microfluidic droplet formation using the two-phase level set method,” Chem. Eng. Sci. 66(20), 4733–4741 (2011).
[Crossref]

Rekštyte, S.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Rogers, E. A.

Rothenberg, M. E.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Roy, R.

Rutkauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Sahoo, D.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Sanchez, S.

C. S. Martinez-Cisneros, S. Sanchez, W. Xi, and O. G. Schmidt, “Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications,” Nano Lett. 14(4), 2219–2224 (2014).
[Crossref] [PubMed]

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40(5), 2109–2119 (2011).
[Crossref] [PubMed]

Sánchez, S.

S. Sánchez, “Lab-in-a-tube systems as ultra-compact devices,” Lab Chip 15(3), 610–613 (2015).
[Crossref] [PubMed]

Sawada, K.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Schmidt, C. K.

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

Schmidt, O. G.

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

C. S. Martinez-Cisneros, S. Sanchez, W. Xi, and O. G. Schmidt, “Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications,” Nano Lett. 14(4), 2219–2224 (2014).
[Crossref] [PubMed]

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40(5), 2109–2119 (2011).
[Crossref] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

D. J. Thurmer, C. Deneke, Y. F. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Schulze, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Schwartz, M. A.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Shelton, A. A.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Sheng, W. J.

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Shi, T. L.

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

Shimono, Y.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Sibarita, J. B.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Sim, S.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Šimbelyte, A.

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Sitt, A.

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Sligar, S. G.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Smilgevicius, V.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Smith, E. J.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Smith, R.

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

Solovev, A. A.

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40(5), 2109–2119 (2011).
[Crossref] [PubMed]

Soukupova, J.

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Speed, T.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Spellman, P. T.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Sperling, E.

S. Zakharchenko, E. Sperling, and L. Ionov, “Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds,” Biomacromolecules 12(6), 2211–2215 (2011).
[Crossref] [PubMed]

Stafslien, S.

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

Stankevicius, E.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Stassi, G.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Stenger, N.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Stilwell, J. L.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Strelow, Ch.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[Crossref] [PubMed]

Sugioka, K.

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Sun, B.

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Sun, J.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Sun, Y.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Takei, K.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Tan, X. H.

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

Théry, M.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Thiel, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Thoumine, O.

O. Thoumine and A. Ott, “Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,” J. Cell Sci. 110(Pt 17), 2109–2116 (1997).
[PubMed]

Thurmer, D. J.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

D. J. Thurmer, C. Deneke, Y. F. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Tong, F.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Turunen, J.

Väckenstedt, B.

Vafai, K.

S. Chung and K. Vafai, “Effect of the fluid-structure interactions on low-density lipoprotein transport within a multi-layered arterial wall,” J. Biomech. 45(2), 371–381 (2012).
[Crossref] [PubMed]

van de Wetering, M.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Vasara, A.

Verdi, D.

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Viens, P.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Visser, B.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Waldman, F. M.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Wang, D.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Wang, H.

Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
[Crossref] [PubMed]

Wang, J.

A. Martín, B. Jurado-Sánchez, A. Escarpa, and J. Wang, “Template electrosynthesis of high-performance graphene microengines,” Small 11(29), 3568–3574 (2015).
[Crossref] [PubMed]

W. Gao and J. Wang, “The environmental impact of micro/nanomachines: a review,” ACS Nano 8(4), 3170–3180 (2014).
[Crossref] [PubMed]

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Wang, N. J.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Wang, T. T.

X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Wang, Y.

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

Wang, Z.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Wegener, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

Welsch, H.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[Crossref] [PubMed]

Weon, B. M.

K. H. Won, B. M. Weon, and J. H. Je, “Polymer composite microtube array produced by meniscus-guided approach,” AIP Adv. 3(9), 092127 (2013).
[Crossref]

Whitesides, G. M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Wicha, M. S.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Wicinski, J.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Won, K. H.

K. H. Won, B. M. Weon, and J. H. Je, “Polymer composite microtube array produced by meniscus-guided approach,” AIP Adv. 3(9), 092127 (2013).
[Crossref]

Wu, D.

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Wu, S. Z.

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Xerri, L.

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Xi, W.

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

C. S. Martinez-Cisneros, S. Sanchez, W. Xi, and O. G. Schmidt, “Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications,” Nano Lett. 14(4), 2219–2224 (2014).
[Crossref] [PubMed]

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Xiang, Z.

Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
[Crossref] [PubMed]

Xiao, R.

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Xie, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

C. Xie, R. Giust, V. Jukna, L. Furfaro, M. Jacquot, P. A. Lacourt, L. Froehly, J. Dudley, A. Couairon, and F. Courvoisier, “Light trajectory in Bessel-Gauss vortex beams,” J. Opt. Soc. Am. A 32(7), 1313–1316 (2015).
[Crossref] [PubMed]

Xu, J.

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Yan, W.

Yang, M. T.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Yeh, J.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Yin, Y.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

Yuan, B.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Zabala, M.

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Zakharchenko, S.

S. Zakharchenko, E. Sperling, and L. Ionov, “Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds,” Biomacromolecules 12(6), 2211–2215 (2011).
[Crossref] [PubMed]

Zboril, R.

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Zhang, C.

Zhang, W.

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Zhao, W.

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

Zhou, R.

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

Zimmerman, W.

S. Bashir, J. Rees, and W. Zimmerman, “Simulations of microfluidic droplet formation using the two-phase level set method,” Chem. Eng. Sci. 66(20), 4733–4741 (2011).
[Crossref]

ACS Nano (2)

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, and O. G. Schmidt, “Self-propelled nanotools,” ACS Nano 6(2), 1751–1756 (2012).
[Crossref] [PubMed]

W. Gao and J. Wang, “The environmental impact of micro/nanomachines: a review,” ACS Nano 8(4), 3170–3180 (2014).
[Crossref] [PubMed]

Adv. Healthc. Mater. (1)

M. Jamal, S. S. Kadam, R. Xiao, F. Jivan, T.-M. Onn, R. Fernandes, T. D. Nguyen, and D. H. Gracias, “Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers,” Adv. Healthc. Mater. 2(8), 1142–1150 (2013).
[Crossref] [PubMed]

Adv. Mater. (2)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24(20), 2710–2714 (2012).
[Crossref] [PubMed]

B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W. Zhang, and X. Jiang, “A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues,” Adv. Mater. 24(7), 890–896 (2012).
[Crossref] [PubMed]

AIP Adv. (1)

K. H. Won, B. M. Weon, and J. H. Je, “Polymer composite microtube array produced by meniscus-guided approach,” AIP Adv. 3(9), 092127 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. A. Fu, H. T. Dong, and W. Fang, “Subwavelength focusing of light by a tapered microtube,” Appl. Phys. Lett. 97(4), 041114 (2010).
[Crossref]

D. J. Thurmer, C. Deneke, Y. F. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Biofabrication (2)

S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009).
[Crossref] [PubMed]

J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, A. Šimbelytė, G. Daunoras, A. Laurinavičienė, A. Laurinavičius, R. Gudas, M. Malinauskas, and R. Mačiulaitis, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication 7(1), 015015 (2015).
[Crossref] [PubMed]

Biomacromolecules (1)

S. Zakharchenko, E. Sperling, and L. Ionov, “Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds,” Biomacromolecules 12(6), 2211–2215 (2011).
[Crossref] [PubMed]

Biomed. Microdevices (1)

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee, “Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery,” Biomicrofluidics 7(2), 026502 (2013).
[Crossref] [PubMed]

Cancer Cell (1)

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner, T. Fevr, L. Clark, N. Bayani, J. P. Coppe, F. Tong, T. Speed, P. T. Spellman, S. DeVries, A. Lapuk, N. J. Wang, W. L. Kuo, J. L. Stilwell, D. Pinkel, D. G. Albertson, F. M. Waldman, F. McCormick, R. B. Dickson, M. D. Johnson, M. Lippman, S. Ethier, A. Gazdar, and J. W. Gray, “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell 10(6), 515–527 (2006).
[Crossref] [PubMed]

Cancer Res. (1)

E. Charafe-Jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera, P. Finetti, M. H. Hur, M. E. Diebel, F. Monville, J. Dutcher, M. Brown, P. Viens, L. Xerri, F. Bertucci, G. Stassi, G. Dontu, D. Birnbaum, and M. S. Wicha, “Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature,” Cancer Res. 69(4), 1302–1313 (2009).
[Crossref] [PubMed]

Chem. Eng. Sci. (1)

S. Bashir, J. Rees, and W. Zimmerman, “Simulations of microfluidic droplet formation using the two-phase level set method,” Chem. Eng. Sci. 66(20), 4733–4741 (2011).
[Crossref]

Chem. Soc. Rev. (1)

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines,” Chem. Soc. Rev. 40(5), 2109–2119 (2011).
[Crossref] [PubMed]

J. Biomech. (1)

S. Chung and K. Vafai, “Effect of the fluid-structure interactions on low-density lipoprotein transport within a multi-layered arterial wall,” J. Biomech. 45(2), 371–381 (2012).
[Crossref] [PubMed]

J. Cell Sci. (1)

O. Thoumine and A. Ott, “Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation,” J. Cell Sci. 110(Pt 17), 2109–2116 (1997).
[PubMed]

J. Micromech. Microeng. (2)

X. H. Tan, T. L. Shi, Y. Gao, W. J. Sheng, B. Sun, and G. L. Liao, “Fabrication of micro/nanotubes by mask-based diffraction lithography,” J. Micromech. Microeng. 24(5), 055006 (2014).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

J. Opt. (1)

X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

J. Opt. A (1)

M. V. Berry and K. T. McDonald, “Exact and geometrical optics energy trajectories in twisted beams,” J. Opt. A 10(3), 035005 (2008).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Lab Chip (3)

S. Sánchez, “Lab-in-a-tube systems as ultra-compact devices,” Lab Chip 15(3), 610–613 (2015).
[Crossref] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

D. Wu, L. G. Niu, S. Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip 15(6), 1515–1523 (2015).
[Crossref] [PubMed]

Laser Photonics Rev. (3)

D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Light Sci. Appl. (2)

D. Wu, J. Xu, S. Z. Wu, L. G. Niu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2(12), e116 (2013).
[Crossref]

Nano Lett. (4)

L. Fan, C. Feng, W. Zhao, L. Qian, Y. Wang, and Y. Li, “Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate,” Nano Lett. 12(7), 3668–3673 (2012).
[Crossref] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

C. S. Martinez-Cisneros, S. Sanchez, W. Xi, and O. G. Schmidt, “Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications,” Nano Lett. 14(4), 2219–2224 (2014).
[Crossref] [PubMed]

W. Xi, C. K. Schmidt, S. Sanchez, D. H. Gracias, R. E. Carazo-Salas, S. P. Jackson, and O. G. Schmidt, “Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies,” Nano Lett. 14(8), 4197–4204 (2014).
[Crossref] [PubMed]

Nano Today (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Nat. Biotechnol. (1)

P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, “Single-cell dissection of transcriptional heterogeneity in human colon tumors,” Nat. Biotechnol. 29(12), 1120–1127 (2011).
[Crossref] [PubMed]

Nat. Cell Biol. (1)

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J. B. Sibarita, and M. Bornens, “The extracellular matrix guides the orientation of the cell division axis,” Nat. Cell Biol. 7(10), 947–953 (2005).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Nature (2)

C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz, “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics,” Nature 466(7303), 263–266 (2010).
[Crossref] [PubMed]

N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature 432(7015), 332–337 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124(1-2), 121–130 (1996).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5, 8914 (2015).
[Crossref] [PubMed]

Science (1)

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276(5317), 1425–1428 (1997).
[Crossref] [PubMed]

Small (3)

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, and J. Guan, “Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles,” Small 11(21), 2564–2570 (2015).
[Crossref] [PubMed]

A. Martín, B. Jurado-Sánchez, A. Escarpa, and J. Wang, “Template electrosynthesis of high-performance graphene microengines,” Small 11(29), 3568–3574 (2015).
[Crossref] [PubMed]

A. Sitt, J. Soukupova, D. Miller, D. Verdi, R. Zboril, H. Hess, and J. Lahann, “Microscale rockets and picoliter containers engineered from electrospun polymeric microtubes,” Small 12(11), 1432–1439 (2016).
[Crossref] [PubMed]

Supplementary Material (4)

NameDescription
» Visualization 1: MOV (1454 KB)      The simulated progress of microparticle capture. The results show that the fluid speed in the microtubes is related to the distance between fluid and the aspirating needle and increases dramatically when it is close to the aspirating needle.
» Visualization 2: MOV (1433 KB)      Capture of NIH 3T3 cells by the microtube arrays. By aspirating with syringe, cells align at one end of microtubes in the first 30 s, then deform and been sucked in.
» Visualization 3: MOV (266 KB)      The simulated process of NIH 3T3 capture. Cells were sucked into microtubes with extrusion deformation firstly, then, moved with fairly high speed in the first part and decelerated when close to the outlet of microtubes.
» Visualization 4: MOV (1230 KB)      Release of captured breast cancer cells. By aspirating with syringe, cells were released slowly from microtubes into cell culture.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

High efficiency fabrication of microtubes by focused femtosecond laser Bessel beam scanning. (a) Femtosecond Bessel beam is generated by phase modulation using a predesigned hologram loaded in the SLM. The inset shows the combination of blazed grating and hologram for a Bessel beam to separate the Bessel beam from the zero diffraction order. (b) The intensity distribution at the focal region of a focused 20th order Bessel beam. The inset shows the intensity distribution at the focal plane. (c) Cylindrical microstructures fabricated by ascending the focal plane line-by-line. In the fifth line, only two cylinders are left and this is the critical position where the cylinder adheres to the substrate. (d) Magnified SEM images of polymerized cylindrical microstructure generated in a single shot. The scale bar is 5 μm. (e) Schematic of the new strategy for rapid fabrication of microtube by scanning focused Bessel beam. (f)-(j) Microtubes fabricated with height of 25 μm, 45 μm, 65 μm, 85 μm, and 105 μm, respectively. Focused 20th order Bessel beam is used for single exposure of cylindrical microstructure in (c)-(d) and for the fabrication of microtubes in (f)-(j). The scale bars are 20 μm.

Fig. 2
Fig. 2

Controlled fabrication of microtube arrays by quantitatively tuning the fabrication parameters (a) The threshold power P at different scanning speeds v. (b) The variation of external physical characteristic of the microtubes with different fabrication parameters. (c)-(d) The relationship between tube diameters and laser power for different scanning speeds.

Fig. 3
Fig. 3

Customized fabrication of microtube arrays by quantitatively tuning the fabrication parameters (a)-(d) Microtubes with periods of 50 μm, 37.5 μm, 25 μm, and 12.5 μm, respectively. The height of microtubes is 75 μm. (e)-(h) Microtubes with hexagonal distribution and 25 μm space (f)-(i) Microtubes arranged in an “USTC” pattern (g)-(j) Microtubes in a 3D “Archimedes spiral” with height increasing linearly. The scale bars are 100 μm in cases (f) and (i), and 50 μm in the other figures.

Fig. 4
Fig. 4

3D slant microtubes and flower-like microtube arrays fabricated by tilted the Bessel beam scanning. (a)-(b) Schematic diagrams of the focus light field scanning in different directions. (c) Fabricated microtubes with slant angles of 15°, 30°, 45°, and 60°, and the zigzag microtube. (d)-(f) Flower-like microtube cluster with 4, 7, and 13 petals respectively. (g)-(i) Tilted view of (d)-(f).The scale bars are 20μm in (c), 50 μm in (d), (e), (g), and (h), and 100 μm in (f) and (i).

Fig. 5
Fig. 5

Capture of SiO2 microparticles and NIH 3T3 cells. (a) Schematic diagram of the micropump system for the capture and release of microparticles and cells. (b) SEM of close-packed microtube array. (c)-(f) Experimental process and the simulated progress of SiO2 nanoparticles being captured by the microtube and passing through slowly by pumping with syringe. Microtubes on a chip are placed in a culture medium rich of SiO2 microparticles. The scale bar is 50 μm. (g)-(j) NIH 3T3 cells are captured into microtubes for single cell research. The scale bar is 50 μm.

Fig. 6
Fig. 6

Movement of SiO2 microparticles and NIH 3T3 cells in the microtubes (a)-(b) Relationship between migration distance and time duration in the progress of SiO2 microparticles and NIH 3T3 cells in the microtubes.

Fig. 7
Fig. 7

Capture, transfer, and release of breast cancer cells. (a) Immersion of microtubes into a medium containing breast cancer cells (b)-(c) Optical and fluorescence microscope images of microtubes immersed into cancer cell medium (d) Capture of breast cancer cells into microtubes using the micro-manipulation system (e)-(f) Optical and fluorescence microscope images of breast cancer cells captured in microtubes. The captured cancer cells are marked with a yellow circle. The yellow arrow points to a group of three captured cells, which serves as a position mark. (g) Transfer of microtubes along with the cover glass to another environment. (h)-(i) Preservation of the captured cancer cells in microtubes after the transfer operation. (j) Cell release process (k)-(l) Microtube after releasing the cancer cells

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T n (r,θ)=exp(inθ)exp(i2πr/ r 0 ),
ϕ grating (i,j)=2π( i Γ + j Γ ),
ϕ holo =( T n + ϕ grating ).
E(ρ,φ,z)= exp(ikz) ikz exp( ik ρ 2 2z ) 0 R 0 2π T n (r,θ)exp( ik r 2 2z )exp[ ikrρcos(θφ) z ]2πrdrdθ.
E(ρ,φ,z)= λ 2.5 i 2.5 r 0 z 1/2 J n ( 2πρ r 0 )exp{i[kz+n(ϕ π 2 )+ πλz r 0 2 + k ρ 2 2z ]}.
E 2 ( x 2 , y 2 , z 2 )= iC λ 0 α 0 2π sin θ 2 E( θ 2 , φ 2 , z obj ) cos θ 2 P( θ 2 , φ 2 ) exp[ik n diff ( z 2 cos θ 2 + x 2 sin θ 2 cos φ 2 + y 2 sin θ 2 sin φ 2 )]d θ 2 d φ 2 .
P( θ 2 , φ 2 )=[1+(cos θ 2 1) cos 2 φ 2 ]i+[(cos θ 2 1)cos φ 2 sin φ 2 ]jsin θ 2 cos φ 2 k

Metrics