Abstract

In this paper, a magnetic field sensor with enhanced sensitivity based on a fiber Fabry-Perot (F-P) cavity formed by a pair of identical fiber Bragg gratings (FBGs) is demonstrated. The F-P cavity which was filled with silicone rubber was bonded to a magnetic alloy at two positions such that when longitudinal strain is applied, the cavity is lengthened while the FBGs was virtually strain-free, effectively magnified the magnetic-field induced strain of the magnetic alloy. The FBGs could also be used for temperature-compensation because the FBG spectrum change is negligible compared to the F-P spectrum.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters

Beilei Wu, Muguang Wang, Yue Dong, Yu Tang, Hongqian Mu, Haisu Li, Bin Yin, Fengping Yan, and Zhen Han
Opt. Express 26(21) 27628-27638 (2018)

In-fiber Fabry-Perot interferometer for strain and magnetic field sensing

Greice K. B. Costa, Paula M. P. Gouvêa, Larissa M. B. Soares, João M. B. Pereira, Fernando Favero, Arthur M. B. Braga, Peter Palffy-Muhoray, Antonio C. Bruno, and Isabel C. S. Carvalho
Opt. Express 24(13) 14690-14696 (2016)

Fiber-optic extrinsic Fabry–Perot dc magnetic field sensor

Ki D. Oh, Anbo Wang, and Richard O. Claus
Opt. Lett. 29(18) 2115-2117 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. Niewczas and J. R. McDonald, “Advanced optical sensors for power and energy systems applications,” IEEE Trans. Instrum. Meas. 10(1), 18–28 (2007).
    [Crossref]
  2. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref] [PubMed]
  3. M. Deng, D. Liu, W. Huang, and T. Zhu, “Highly-sensitive magnetic field sensor based on fiber ring laser,” Opt. Express 24(1), 645–651 (2016).
    [Crossref] [PubMed]
  4. G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert, “Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber,” Opt. Express 24(10), 11164–11173 (2016).
    [Crossref] [PubMed]
  5. J. Du, Y. Tao, Y. Liu, L. Ma, W. Zhang, and Z. He, “Highly sensitive and reconfigurable fiber optic current sensor by optical recirculating in a fiber loop,” Opt. Express 24(16), 17980–17988 (2016).
    [Crossref] [PubMed]
  6. X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
    [Crossref]
  7. F. Calkins, A. B. Flatau, and M. J. Dapino, “Overview of magnetostrictive sensor technology,” J. Intell. Mater. Syst. Struct. 18(10), 1057–1066 (2007).
    [Crossref]
  8. C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
    [Crossref]
  9. D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
    [Crossref]
  10. H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
    [Crossref]
  11. S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
    [Crossref] [PubMed]
  12. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
    [Crossref] [PubMed]
  13. Q. Zhao, Y. Dai, T. Li, B. Liu, M. Yang, and G. Yin, “Femtosecond laser ablation of microstructures in fiber and application in magnetic field sensing,” Opt. Lett. 39(7), 1905–1908 (2014).
    [Crossref] [PubMed]
  14. J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
    [Crossref]
  15. F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
    [Crossref] [PubMed]
  16. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).
    [Crossref]
  17. J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, and K. Ullakko, “Basic properties of magnetic shape memory actuators,” In 8th International Conference Actuator, (2002) pp. 566–569.
  18. Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16(2), 572–574 (2004).
    [Crossref]
  19. G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, “Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields,” Opt. Express 19(1), 363–370 (2011).
    [Crossref] [PubMed]
  20. F. Chen, Y. Jiang, H. Gao, and L. Jiang, “A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor,” Opt. Laser Technol. 71, 62–65 (2015).
    [Crossref]
  21. D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
    [Crossref]
  22. T. Ioppolo, U. Ayaz, and M. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
    [Crossref]
  23. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  24. B. Zhou, H. Jiang, R. Wang, and C. Lu, “Optical fiber Fabry–Perot filter with tunable cavity for high-precision resonance wavelength adjustment,” J. Lightwave Technol. 33(14), 2950–2954 (2015).
  25. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [Crossref] [PubMed]
  26. W. F. Yeung and A. R. Johnston, “Effect of temperature on optical fiber transmission,” Appl. Opt. 17(23), 3703–3705 (1978).
    [Crossref] [PubMed]

2016 (3)

2015 (4)

F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
[Crossref] [PubMed]

B. Zhou, H. Jiang, R. Wang, and C. Lu, “Optical fiber Fabry–Perot filter with tunable cavity for high-precision resonance wavelength adjustment,” J. Lightwave Technol. 33(14), 2950–2954 (2015).

J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
[Crossref]

F. Chen, Y. Jiang, H. Gao, and L. Jiang, “A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor,” Opt. Laser Technol. 71, 62–65 (2015).
[Crossref]

2014 (2)

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).
[Crossref]

Q. Zhao, Y. Dai, T. Li, B. Liu, M. Yang, and G. Yin, “Femtosecond laser ablation of microstructures in fiber and application in magnetic field sensing,” Opt. Lett. 39(7), 1905–1908 (2014).
[Crossref] [PubMed]

2012 (1)

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

2011 (1)

2010 (2)

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
[Crossref] [PubMed]

S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

2009 (2)

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

T. Ioppolo, U. Ayaz, and M. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

2008 (2)

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

2007 (3)

P. Niewczas and J. R. McDonald, “Advanced optical sensors for power and energy systems applications,” IEEE Trans. Instrum. Meas. 10(1), 18–28 (2007).
[Crossref]

F. Calkins, A. B. Flatau, and M. J. Dapino, “Overview of magnetostrictive sensor technology,” J. Intell. Mater. Syst. Struct. 18(10), 1057–1066 (2007).
[Crossref]

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

2006 (1)

2004 (1)

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16(2), 572–574 (2004).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1978 (1)

Aaltio, I.

J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, and K. Ullakko, “Basic properties of magnetic shape memory actuators,” In 8th International Conference Actuator, (2002) pp. 566–569.

Allsop, T.

Ambrosino, C.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Andrés, M. V.

J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
[Crossref]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[Crossref] [PubMed]

Araújo, J. F.

S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Askins, C.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Ayaz, U.

T. Ioppolo, U. Ayaz, and M. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

Baptista, J. M.

J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
[Crossref]

Barmenkov, Y. O.

Bennion, I.

Bohnert, K.

Braga, A. M.

S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Bruno, A. C.

S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Calkins, F.

F. Calkins, A. B. Flatau, and M. J. Dapino, “Overview of magnetostrictive sensor technology,” J. Intell. Mater. Syst. Struct. 18(10), 1057–1066 (2007).
[Crossref]

Campopiano, S.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Capoluongo, P.

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Chen, F.

F. Chen, Y. Jiang, H. Gao, and L. Jiang, “A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor,” Opt. Laser Technol. 71, 62–65 (2015).
[Crossref]

F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
[Crossref] [PubMed]

Chiang, K. S.

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16(2), 572–574 (2004).
[Crossref]

Chu, P. L.

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16(2), 572–574 (2004).
[Crossref]

Cruz, J. L.

J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
[Crossref]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[Crossref] [PubMed]

Culverhouse, P.

Cusano, A.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Cutolo, A.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Dai, J.

Dai, Y.

Dapino, M. J.

F. Calkins, A. B. Flatau, and M. J. Dapino, “Overview of magnetostrictive sensor technology,” J. Intell. Mater. Syst. Struct. 18(10), 1057–1066 (2007).
[Crossref]

Davino, D.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Decossas, S.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Deng, M.

Du, J.

Flatau, A. B.

F. Calkins, A. B. Flatau, and M. J. Dapino, “Overview of magnetostrictive sensor technology,” J. Intell. Mater. Syst. Struct. 18(10), 1057–1066 (2007).
[Crossref]

Frank, A.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Fuard, D.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Gao, H.

F. Chen, Y. Jiang, H. Gao, and L. Jiang, “A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor,” Opt. Laser Technol. 71, 62–65 (2015).
[Crossref]

Gibson, M. A.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).
[Crossref]

Giordano, M.

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Gu, X.

He, Z.

Huang, W.

Ioppolo, T.

T. Ioppolo, U. Ayaz, and M. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

Jääskeläinen, A.

J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, and K. Ullakko, “Basic properties of magnetic shape memory actuators,” In 8th International Conference Actuator, (2002) pp. 566–569.

Jani, J. M.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).
[Crossref]

Jiang, D.

Jiang, H.

Jiang, L.

F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
[Crossref] [PubMed]

F. Chen, Y. Jiang, H. Gao, and L. Jiang, “A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor,” Opt. Laser Technol. 71, 62–65 (2015).
[Crossref]

Jiang, S.

Jiang, Y.

F. Chen, Y. Jiang, and L. Jiang, “3 × 3 coupler based interferometric magnetic field sensor using a TbDyFe rod,” Appl. Opt. 54(8), 2085–2090 (2015).
[Crossref] [PubMed]

F. Chen, Y. Jiang, H. Gao, and L. Jiang, “A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor,” Opt. Laser Technol. 71, 62–65 (2015).
[Crossref]

Johnston, A. R.

Jorge, P. A. S.

J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
[Crossref]

Kalli, K.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koo, K.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koutsides, C.

Leary, M.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Li, T.

Liu, B.

Liu, D.

Liu, H.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

Liu, Y.

J. Du, Y. Tao, Y. Liu, L. Ma, W. Zhang, and Z. He, “Highly sensitive and reconfigurable fiber optic current sensor by optical recirculating in a fiber loop,” Opt. Express 24(16), 17980–17988 (2016).
[Crossref] [PubMed]

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16(2), 572–574 (2004).
[Crossref]

Lu, C.

Lu, Y.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Ma, L.

Marciante, J. R.

McDonald, J. R.

P. Niewczas and J. R. McDonald, “Advanced optical sensors for power and energy systems applications,” IEEE Trans. Instrum. Meas. 10(1), 18–28 (2007).
[Crossref]

Müller, G. M.

Nascimento, J.

J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
[Crossref]

Neal, R.

Niewczas, P.

P. Niewczas and J. R. McDonald, “Advanced optical sensors for power and energy systems applications,” IEEE Trans. Instrum. Meas. 10(1), 18–28 (2007).
[Crossref]

Or, S. W.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

Ötügen, M.

T. Ioppolo, U. Ayaz, and M. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Putnam, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Quintero, S. M.

S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Schiavone, P.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Smith, G. N.

Song, M.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Subic, A.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).
[Crossref]

Sugden, K.

Sun, L.

Suorsa, I.

J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, and K. Ullakko, “Basic properties of magnetic shape memory actuators,” In 8th International Conference Actuator, (2002) pp. 566–569.

Tam, H. Y.

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

Tao, Y.

Tellinen, J.

J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, and K. Ullakko, “Basic properties of magnetic shape memory actuators,” In 8th International Conference Actuator, (2002) pp. 566–569.

Torres-Peiró, S.

Tracqui, P.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Tzvetkova-Chevolleau, T.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Ullakko, K.

J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, and K. Ullakko, “Basic properties of magnetic shape memory actuators,” In 8th International Conference Actuator, (2002) pp. 566–569.

Visone, C.

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

Wang, R.

Weber, H. I.

S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Wu, Z.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Xia, Q.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Yang, H.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Yang, L.

Yang, M.

Yeung, W. F.

Yin, C.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Yin, G.

Zalvidea, D.

Zeng, X.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Zhang, W.

Zhao, Q.

Zhou, B.

Zhou, C.

Zhu, T.

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (1)

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16(2), 572–574 (2004).
[Crossref]

IEEE Sens. J. (1)

C. Ambrosino, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, D. Davino, C. Visone, and A. Cusano, “Fiber bragg grating and magnetic shape memory alloy: Novel high-sensitivity magnetic Sensor,” IEEE Sens. J. 7(2), 228–229 (2007).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. Niewczas and J. R. McDonald, “Advanced optical sensors for power and energy systems applications,” IEEE Trans. Instrum. Meas. 10(1), 18–28 (2007).
[Crossref]

J. Appl. Phys. (1)

T. Ioppolo, U. Ayaz, and M. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

J. Intell. Mater. Syst. Struct. (1)

F. Calkins, A. B. Flatau, and M. J. Dapino, “Overview of magnetostrictive sensor technology,” J. Intell. Mater. Syst. Struct. 18(10), 1057–1066 (2007).
[Crossref]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

B. Zhou, H. Jiang, R. Wang, and C. Lu, “Optical fiber Fabry–Perot filter with tunable cavity for high-precision resonance wavelength adjustment,” J. Lightwave Technol. 33(14), 2950–2954 (2015).

Mater. Des. (1)

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).
[Crossref]

Microelectron. Eng. (1)

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng. 85(5-6), 1289–1293 (2008).
[Crossref]

Opt. Express (7)

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[Crossref] [PubMed]

M. Deng, D. Liu, W. Huang, and T. Zhu, “Highly-sensitive magnetic field sensor based on fiber ring laser,” Opt. Express 24(1), 645–651 (2016).
[Crossref] [PubMed]

G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert, “Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber,” Opt. Express 24(10), 11164–11173 (2016).
[Crossref] [PubMed]

J. Du, Y. Tao, Y. Liu, L. Ma, W. Zhang, and Z. He, “Highly sensitive and reconfigurable fiber optic current sensor by optical recirculating in a fiber loop,” Opt. Express 24(16), 17980–17988 (2016).
[Crossref] [PubMed]

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
[Crossref] [PubMed]

G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, “Characterisation and performance of a Terfenol-D coated femtosecond laser inscribed optical fibre Bragg sensor with a laser ablated microslot for the detection of static magnetic fields,” Opt. Express 19(1), 363–370 (2011).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

F. Chen, Y. Jiang, H. Gao, and L. Jiang, “A high-finesse fiber optic Fabry–Perot interferometer based magnetic-field sensor,” Opt. Laser Technol. 71, 62–65 (2015).
[Crossref]

Opt. Lett. (1)

Sens. Actuators A Phys. (3)

J. Nascimento, J. M. Baptista, P. A. S. Jorge, J. L. Cruz, and M. V. Andrés, “Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer,” Sens. Actuators A Phys. 235, 227–233 (2015).
[Crossref]

D. Davino, C. Visone, C. Ambrosino, S. Campopiano, A. Cusano, and A. Cutolo, “Compensation of hysteresis in magnetic field sensors employing Fiber Bragg Grating and magneto-elastic materials,” Sens. Actuators A Phys. 147(1), 127–136 (2008).
[Crossref]

H. Liu, S. W. Or, and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sens. Actuators A Phys. 173(1), 122–126 (2012).
[Crossref]

Sensors (Basel) (1)

S. M. Quintero, A. M. Braga, H. I. Weber, A. C. Bruno, and J. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Other (2)

J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, and K. Ullakko, “Basic properties of magnetic shape memory actuators,” In 8th International Conference Actuator, (2002) pp. 566–569.

X. Zeng, H. Yang, Z. Wu, M. Song, Y. Lu, C. Yin, and Q. Xia, “Research on Current Sensor Based on POTDR,” in Asia-Pacific Optical Sensors Conference, (Optical Society of America, 2016), paper JF2A.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sensor structure and experimental setup. The left inset is the detailed structure of the fiber F-P interferometer, which is fixed to a magnetostrictive rod on two ends. The right inset is the microscope image of the sensitivity enhanced F-P resonator with silicone filled cavity. OSA: optical spectrum analyzer.
Fig. 2
Fig. 2 Elongation of the F-P resonator with silica/silicone/silica structure with applying axial force. (a) The simulated diagrams (left) and the microscope images (right) of F-P resonator with (bottom) and without (top) axial force. The color bar shows the lengthening at fiber axis direction. (b) The simulation elongation of the silica fiber and silicone cavity. The inset shows the zoomed in elongation and strain of the silica fiber.
Fig. 3
Fig. 3 (a) The transmission spectrum of F-P cavity (solid line) and its fitted envelope, i.e. the FBG spectrum (dashed line) shift with the increasing magnetic field. The 20 dB offset is for graphic clarity. (b) One of the F-P peak wavelength and the FBG Bragg wavelength vary at different magnetic field. (c) Large scale and repeatability testing. Negligible hysteresis effect observed as the soft magnetostrictive alloy applied.
Fig. 4
Fig. 4 The tested wavelength shifts to the magnetic field when the F-P sensor and an extra reference FBG glued together to the magnetic alloy. The inset shown the FBG response. The result demonstrates the large sensitivity enhancement of the soft cavity F-P structure.
Fig. 5
Fig. 5 (a) The transmission spectrum of F-P cavity (solid line) and its fitted envelope, i.e. the FBG spectrum (dashed line) shift with the increasing temperature at zero magnetic strength. The 20 dB offset is for graphic clarity. (b) One of the F-P peak wavelength and the FBG Bragg wavelengths vary at different temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A= n silicone ΔL/ L eff_FP (1 P ε )ΔL/L = n silicone L (1 P ε ) L eff_FP ,
L eff_FP = n silicone L+2 L eff_FBG ,
L eff_FBG = n silica L FBG R 2atanh R ,

Metrics