Abstract

We explore plasmon-enhanced wire-gird polarizers (WGPs) to achieve improved polarimetric performance with more relaxed fabrication parameters compared to conventional WGP. A WGP designed with a blazed wire-grid profile was considered for plasmonic enhancement. The results show that a blazed WGP can achieve extremely high polarimetric extinction at a longer wire-grid period (Λ) compared to conventional WGP structure. Under the optimum geometrical parameters, a blazed WGP may attain an extinction ratio of over 40 dB at Λ = 800 nm, which may allow photolithography for fabrication. In contrast, conventional WGPs obtained comparable performance at Λ = 200 nm, requiring more difficult lithographic techniques. The study can therefore be of significant importance for WGPs to be more widely available for diverse applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-extinction-based detection of DNA hybridization in situusing a nanoparticle wire-grid polarizer

Hojeong Yu, Youngjin Oh, Soowon Kim, Seok Ho Song, and Donghyun Kim
Opt. Lett. 37(18) 3867-3869 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Pearson, 2016), Chap. 8.
  2. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997), Chap. 2 and 16.
  3. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50(9), 886–891 (1960).
    [Crossref]
  4. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-microm-wavelength band,” Opt. Lett. 22(6), 419–421 (1997).
    [Crossref] [PubMed]
  5. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
    [Crossref]
  6. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
    [Crossref]
  7. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
    [Crossref]
  8. S. H. Ahn, J. S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25(6), 2388–2391 (2007).
    [Crossref]
  9. F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
    [Crossref]
  10. J. B. Young, H. A. Graham, and E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4(8), 1023–1026 (1965).
    [Crossref]
  11. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33(3), 258–260 (2008).
    [Crossref] [PubMed]
  12. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 274–276 (2009).
    [Crossref] [PubMed]
  13. T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
    [Crossref] [PubMed]
  14. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36(14), 2665–2667 (2011).
    [Crossref] [PubMed]
  15. I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
    [Crossref] [PubMed]
  16. T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt. 51(16), 3224–3227 (2012).
    [Crossref] [PubMed]
  17. J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100(23), 231912 (2012).
    [Crossref]
  18. Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
    [Crossref]
  19. K. Asano, S. Yokoyama, A. Kemmochi, and T. Yatagai, “Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating,” Appl. Opt. 53(13), 2942–2948 (2014).
    [Crossref] [PubMed]
  20. T. Weber, S. Kroker, T. Käsebier, E. B. Kley, and A. Tünnermann, “Silicon wire grid polarizer for ultraviolet applications,” Appl. Opt. 53(34), 8140–8144 (2014).
    [Crossref] [PubMed]
  21. D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44(26), 5398–5402 (2005).
    [Crossref] [PubMed]
  22. D. Kim, C. Warde, K. Vaccaro, and C. Woods, “Imaging multispectral polarimetric sensor: single-pixel design, fabrication, and characterization,” Appl. Opt. 42(19), 3756–3764 (2003).
    [Crossref] [PubMed]
  23. D. Kim and K. Burke, “Design of a grating-based thin-film filter for broadband spectropolarimetry,” Appl. Opt. 42(31), 6321–6326 (2003).
    [Crossref] [PubMed]
  24. M. Xu, H. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), 2303–2320 (2005).
    [Crossref] [PubMed]
  25. S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
    [Crossref]
  26. Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92(5), 051109 (2008).
    [Crossref]
  27. J.-S. Seo, T.-E. Yeom, and J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Korea 16(2), 151–156 (2012).
    [Crossref]
  28. X.-J. Yu and H.-S. Kwok, “Application of wire-grid polarizers to projection displays,” Appl. Opt. 42(31), 6335–6341 (2003).
    [Crossref] [PubMed]
  29. J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
    [Crossref] [PubMed]
  30. K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21(9), 11132–11140 (2013).
    [Crossref] [PubMed]
  31. H. Yu, Y. Oh, S. Kim, S. H. Song, and D. Kim, “Polarization-extinction-based detection of DNA hybridization in situ using a nanoparticle wire-grid polarizer,” Opt. Lett. 37(18), 3867–3869 (2012).
    [Crossref] [PubMed]
  32. H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Opt. 47(30), 5715–5721 (2008).
    [Crossref] [PubMed]
  33. D. Kim, “Polarization characteristics of a wire-grid polarizer in a rotating platform,” Appl. Opt. 44(8), 1366–1371 (2005).
    [Crossref] [PubMed]
  34. D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008).
    [Crossref] [PubMed]
  35. F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
    [Crossref]
  36. Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
    [Crossref] [PubMed]
  37. A. Ferraro, D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, and R. Beccherelli, “Flexible terahertz wire grid polarizer with high extinction ratio and low loss,” Opt. Lett. 41(9), 2009–2012 (2016).
    [Crossref] [PubMed]
  38. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [Crossref]
  39. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [Crossref]
  40. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Ch. 2 Surface Plasmons on Smooth Surfaces.
  41. A. Lehmuskero, B. Bai, P. Vahimaa, and M. Kuittinen, “Wire-grid polarizers in the volume plasmon region,” Opt. Express 17(7), 5481–5489 (2009).
    [Crossref] [PubMed]
  42. C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
    [Crossref]
  43. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25(3), 725–735 (2008).
    [Crossref] [PubMed]
  44. K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
    [Crossref] [PubMed]
  45. S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
    [Crossref] [PubMed]
  46. K. Kim, Y. Oh, W. Lee, and D. Kim, “Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence,” Opt. Lett. 35(20), 3501–3503 (2010).
    [Crossref] [PubMed]
  47. Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
    [Crossref] [PubMed]
  48. S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
    [Crossref] [PubMed]
  49. J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
    [Crossref]
  50. W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
    [Crossref] [PubMed]
  51. E. G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16(10), 2711–2721 (1977).
    [Crossref] [PubMed]
  52. T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7(12), 578–580 (1982).
    [Crossref] [PubMed]
  53. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
    [Crossref] [PubMed]
  54. C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
    [Crossref]
  55. N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
    [Crossref]
  56. N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
    [Crossref]
  57. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [Crossref] [PubMed]
  58. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24(2), 522–529 (2007).
    [Crossref] [PubMed]
  59. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [Crossref] [PubMed]
  60. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
    [Crossref] [PubMed]
  61. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2016 (2)

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

A. Ferraro, D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, and R. Beccherelli, “Flexible terahertz wire grid polarizer with high extinction ratio and low loss,” Opt. Lett. 41(9), 2009–2012 (2016).
[Crossref] [PubMed]

2015 (1)

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21(9), 11132–11140 (2013).
[Crossref] [PubMed]

Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

2012 (8)

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100(23), 231912 (2012).
[Crossref]

Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[Crossref] [PubMed]

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
[Crossref]

T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt. 51(16), 3224–3227 (2012).
[Crossref] [PubMed]

J.-S. Seo, T.-E. Yeom, and J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Korea 16(2), 151–156 (2012).
[Crossref]

H. Yu, Y. Oh, S. Kim, S. H. Song, and D. Kim, “Polarization-extinction-based detection of DNA hybridization in situ using a nanoparticle wire-grid polarizer,” Opt. Lett. 37(18), 3867–3869 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (2)

2009 (3)

2008 (6)

2007 (2)

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24(2), 522–529 (2007).
[Crossref] [PubMed]

S. H. Ahn, J. S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25(6), 2388–2391 (2007).
[Crossref]

2006 (3)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
[Crossref] [PubMed]

2005 (5)

D. Kim, “Polarization characteristics of a wire-grid polarizer in a rotating platform,” Appl. Opt. 44(8), 1366–1371 (2005).
[Crossref] [PubMed]

M. Xu, H. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), 2303–2320 (2005).
[Crossref] [PubMed]

D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44(26), 5398–5402 (2005).
[Crossref] [PubMed]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

2003 (5)

D. Kim, C. Warde, K. Vaccaro, and C. Woods, “Imaging multispectral polarimetric sensor: single-pixel design, fabrication, and characterization,” Appl. Opt. 42(19), 3756–3764 (2003).
[Crossref] [PubMed]

D. Kim and K. Burke, “Design of a grating-based thin-film filter for broadband spectropolarimetry,” Appl. Opt. 42(31), 6321–6326 (2003).
[Crossref] [PubMed]

X.-J. Yu and H.-S. Kwok, “Application of wire-grid polarizers to projection displays,” Appl. Opt. 42(31), 6335–6341 (2003).
[Crossref] [PubMed]

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[Crossref]

1997 (1)

1996 (1)

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

1982 (1)

1977 (1)

1968 (1)

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
[Crossref]

1965 (2)

1960 (1)

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Ahn, S. H.

S. H. Ahn, J. S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25(6), 2388–2391 (2007).
[Crossref]

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Akioka, S.

Ando, K.

Asano, K.

Bai, B.

Bailey, T. C.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Barnett, J.

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

Beccherelli, R.

Bird, G. R.

Brown, E. R.

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100(23), 231912 (2012).
[Crossref]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Burke, K.

Byun, K. M.

Caputo, R.

Carter, J.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Cetnar, J. S.

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100(23), 231912 (2012).
[Crossref]

Chan, H. P.

Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Chang, C. H.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Cho, E.-J.

K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
[Crossref] [PubMed]

Choi, J.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Chu, J.

F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
[Crossref]

Cornelissen, H.

David, C.

de Boer, D.

Deng, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Dong, C. H.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Doumuki, T.

Einishi, T.

Ekerdt, J. G.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Ekinci, Y.

Emoto, A.

N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
[Crossref]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Feng, J.

J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
[Crossref] [PubMed]

Ferraro, A.

Fleming, R. C.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Frankel, R. D.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Fujita, T.

Fukumi, K.

Ge, Z.

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92(5), 051109 (2008).
[Crossref]

Graham, H. A.

Guo, G. C.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Guo, L. J.

Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[Crossref] [PubMed]

S. H. Ahn, J. S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25(6), 2388–2391 (2007).
[Crossref]

Haam, S.

Hangyo, M.

Heilmann, R. K.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Helgert, M.

Hessel, A.

Hsu, J. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Hu, W.

J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
[Crossref] [PubMed]

Huang, Z.

Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Huh, Y.-M.

K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
[Crossref] [PubMed]

Ichii, A.

Joon Yoon, S.

Kakiuchi, K.

Käsebier, T.

Kawatsuki, N.

N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
[Crossref]

Kemmochi, A.

Kim, A. L.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Kim, D.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

H. Yu, Y. Oh, S. Kim, S. H. Song, and D. Kim, “Polarization-extinction-based detection of DNA hybridization in situ using a nanoparticle wire-grid polarizer,” Opt. Lett. 37(18), 3867–3869 (2012).
[Crossref] [PubMed]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
[Crossref] [PubMed]

K. Kim, Y. Oh, W. Lee, and D. Kim, “Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence,” Opt. Lett. 35(20), 3501–3503 (2010).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
[Crossref] [PubMed]

H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Opt. 47(30), 5715–5721 (2008).
[Crossref] [PubMed]

D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008).
[Crossref] [PubMed]

S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25(3), 725–735 (2008).
[Crossref] [PubMed]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24(2), 522–529 (2007).
[Crossref] [PubMed]

D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44(26), 5398–5402 (2005).
[Crossref] [PubMed]

D. Kim, “Polarization characteristics of a wire-grid polarizer in a rotating platform,” Appl. Opt. 44(8), 1366–1371 (2005).
[Crossref] [PubMed]

D. Kim and K. Burke, “Design of a grating-based thin-film filter for broadband spectropolarimetry,” Appl. Opt. 42(31), 6321–6326 (2003).
[Crossref] [PubMed]

D. Kim, C. Warde, K. Vaccaro, and C. Woods, “Imaging multispectral polarimetric sensor: single-pixel design, fabrication, and characterization,” Appl. Opt. 42(19), 3756–3764 (2003).
[Crossref] [PubMed]

Kim, D. J.

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
[Crossref] [PubMed]

Kim, E.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

Kim, H. C.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

Kim, J. S.

S. H. Ahn, J. S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25(6), 2388–2391 (2007).
[Crossref]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kim, K.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

K. Kim, Y. Oh, W. Lee, and D. Kim, “Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence,” Opt. Lett. 35(20), 3501–3503 (2010).
[Crossref] [PubMed]

K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
[Crossref] [PubMed]

Kim, S.

Kim, S. H.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kim, S. J.

Kim, S. Y.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Kim, Y.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

Kinosita, Y.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Kintaka, K.

Kley, E. B.

Ko, J.-H.

Kondo, M.

N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
[Crossref]

Koyama, J.

Kroker, S.

Kuittinen, M.

Kurz, H.

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

Kwok, H. S.

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[Crossref]

Kwok, H.-S.

Lee, H.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

Lee, K.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

Lee, K. D.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Lee, W.

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Lehmuskero, A.

Lin, X. W.

J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
[Crossref] [PubMed]

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Liu, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Loewen, E. G.

Lu, Y. Q.

J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
[Crossref] [PubMed]

Luo, G.

F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Matsumoto, S.

Matsuoka, H.

Maximov, I.

F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
[Crossref]

Maystre, D.

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Meng, F.

F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
[Crossref]

Messerschmidt, M.

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

Middendorf, J. R.

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100(23), 231912 (2012).
[Crossref]

Mikami, N.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Missori, M.

Miyata, M.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Montelius, L.

F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
[Crossref]

Moon, S.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

Morimoto, I.

Murphy, E.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Nevière, M.

Nishihara, H.

Nishii, J.

Nishioka, E.

N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
[Crossref]

Nishizaka, T.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Noda, T.

Nowak, C.

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

Oh, Y.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

H. Yu, Y. Oh, S. Kim, S. H. Song, and D. Kim, “Polarization-extinction-based detection of DNA hybridization in situ using a nanoparticle wire-grid polarizer,” Opt. Lett. 37(18), 3867–3869 (2012).
[Crossref] [PubMed]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
[Crossref] [PubMed]

K. Kim, Y. Oh, W. Lee, and D. Kim, “Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence,” Opt. Lett. 35(20), 3501–3503 (2010).
[Crossref] [PubMed]

Ohta, J.

Ok, J. G.

Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[Crossref] [PubMed]

Oliner, A. A.

Ono, H.

N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
[Crossref]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Park, H.

Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Park, J. D.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Parrish, M.

Parrott, E. P.

Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Peccianti, M.

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Peterson, E. W.

Pickwell-MacPherson, E.

Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Pina-Hernandez, C.

Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[Crossref] [PubMed]

Plachetka, U.

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

Prentiss, M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

Ren, X. F.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Rogers, J. A.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Ryu, H.

Saito, M.

Sasagawa, K.

Schattenburg, M. L.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Schlachter, F.

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

Sciortino, P.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Seo, J.-S.

Sheridon, N. K.

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
[Crossref]

Shin, J.-S.

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Shin, Y. J.

Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[Crossref] [PubMed]

Shishido, S.

Sigg, H.

Sim, E.

Solak, H. H.

Song, S. H.

Suh, J.-S.

K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
[Crossref] [PubMed]

Sun, F. W.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

Takano, K.

Tamada, H.

Tani, K.

Thesen, M.

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

Tokuda, T.

Tünnermann, A.

Urbach, H.

Vaccaro, K.

Vahimaa, P.

Voisin, R.

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

Walters, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Wang, J. J.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Warde, C.

Watanabe, W.

Weber, T.

Whitesides, G. M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Woods, C.

Wu, S. T.

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92(5), 051109 (2008).
[Crossref]

Wu, T. X.

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92(5), 051109 (2008).
[Crossref]

Wu, Y. K.

Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[Crossref] [PubMed]

Xia, Y.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

Xu, F.

J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
[Crossref] [PubMed]

Xu, H.

F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
[Crossref]

Xu, M.

Yamada, I.

Yamagishi, Y.

Yamaguchi, T.

Yamashita, N.

Yang, H.

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Yatagai, T.

Yeom, T.-E.

Yokoyama, H.

Yokoyama, S.

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Yoon, S. J.

Young, J. B.

Yu, H.

Yu, X. J.

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[Crossref]

Yu, X.-J.

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Zhao, X. M.

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

Zhao, Y.

J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
[Crossref] [PubMed]

Zografopoulos, D. C.

Zou, C. L.

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

ACS Nano (1)

W. Lee, Y. Kinosita, Y. Oh, N. Mikami, H. Yang, M. Miyata, T. Nishizaka, and D. Kim, “Three-dimensional superlocalization imaging of gliding Mycoplasma mobile by extraordinary light transmission through arrayed nanoholes,” ACS Nano 9(11), 10896–10908 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J.-S. Shin, and D. Kim, “Extraordinary transmission based plasmonic nanoarrays for axially super-resolved cell imaging,” Adv. Opt. Mater. 2(1), 48–55 (2014).
[Crossref]

Appl. Opt. (13)

J. B. Young, H. A. Graham, and E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4(8), 1023–1026 (1965).
[Crossref]

A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
[Crossref]

E. G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16(10), 2711–2721 (1977).
[Crossref] [PubMed]

D. Kim, C. Warde, K. Vaccaro, and C. Woods, “Imaging multispectral polarimetric sensor: single-pixel design, fabrication, and characterization,” Appl. Opt. 42(19), 3756–3764 (2003).
[Crossref] [PubMed]

D. Kim and K. Burke, “Design of a grating-based thin-film filter for broadband spectropolarimetry,” Appl. Opt. 42(31), 6321–6326 (2003).
[Crossref] [PubMed]

X.-J. Yu and H.-S. Kwok, “Application of wire-grid polarizers to projection displays,” Appl. Opt. 42(31), 6335–6341 (2003).
[Crossref] [PubMed]

D. Kim, “Polarization characteristics of a wire-grid polarizer in a rotating platform,” Appl. Opt. 44(8), 1366–1371 (2005).
[Crossref] [PubMed]

D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44(26), 5398–5402 (2005).
[Crossref] [PubMed]

H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Opt. 47(30), 5715–5721 (2008).
[Crossref] [PubMed]

S. Moon, D. J. Kim, K. Kim, D. Kim, H. Lee, K. Lee, and S. Haam, “Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization,” Appl. Opt. 49(3), 484–491 (2010).
[Crossref] [PubMed]

T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt. 51(16), 3224–3227 (2012).
[Crossref] [PubMed]

K. Asano, S. Yokoyama, A. Kemmochi, and T. Yatagai, “Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating,” Appl. Opt. 53(13), 2942–2948 (2014).
[Crossref] [PubMed]

T. Weber, S. Kroker, T. Käsebier, E. B. Kley, and A. Tünnermann, “Silicon wire grid polarizer for ultraviolet applications,” Appl. Opt. 53(34), 8140–8144 (2014).
[Crossref] [PubMed]

Appl. Phys. Express (1)

N. Kawatsuki, E. Nishioka, A. Emoto, H. Ono, and M. Kondo, “Blazed surface relief formation in azobenzene-containing polymeric films by asymmetric polarization holography,” Appl. Phys. Express 5(4), 041601 (2012).
[Crossref]

Appl. Phys. Lett. (5)

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
[Crossref]

C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
[Crossref]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100(23), 231912 (2012).
[Crossref]

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92(5), 051109 (2008).
[Crossref]

Biosens. Bioelectron. (1)

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32(1), 141–147 (2012).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

Z. Huang, H. Park, E. P. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photonics Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

J. Appl. Phys. (1)

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Korea (1)

J. Vac. Sci. Technol. B (2)

C. H. Chang, R. K. Heilmann, R. C. Fleming, J. Carter, E. Murphy, M. L. Schattenburg, T. C. Bailey, J. G. Ekerdt, R. D. Frankel, and R. Voisin, “Fabrication of sawtooth diffraction gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003).
[Crossref]

S. H. Ahn, J. S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25(6), 2388–2391 (2007).
[Crossref]

Microelectron. Eng. (2)

F. Schlachter, J. Barnett, U. Plachetka, C. Nowak, M. Messerschmidt, M. Thesen, and H. Kurz, “UV-NIL based nanostructuring of aluminum using a novel organic imprint resist demonstrated for 100nm half-pitch wire grid polarizer,” Microelectron. Eng. 155, 118–121 (2016).
[Crossref]

F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectron. Eng. 88(10), 3108–3112 (2011).
[Crossref]

Nano Lett. (1)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[Crossref] [PubMed]

Nanotechnology (4)

Y. J. Shin, C. Pina-Hernandez, Y. K. Wu, J. G. Ok, and L. J. Guo, “Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting,” Nanotechnology 23(34), 344018 (2012).
[Crossref] [PubMed]

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20(1), 015202 (2009).
[Crossref] [PubMed]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (11)

I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33(3), 258–260 (2008).
[Crossref] [PubMed]

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 274–276 (2009).
[Crossref] [PubMed]

K. Kim, Y. Oh, W. Lee, and D. Kim, “Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence,” Opt. Lett. 35(20), 3501–3503 (2010).
[Crossref] [PubMed]

T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
[Crossref] [PubMed]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36(8), 1353–1355 (2011).
[Crossref] [PubMed]

K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36(14), 2665–2667 (2011).
[Crossref] [PubMed]

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
[Crossref] [PubMed]

H. Yu, Y. Oh, S. Kim, S. H. Song, and D. Kim, “Polarization-extinction-based detection of DNA hybridization in situ using a nanoparticle wire-grid polarizer,” Opt. Lett. 37(18), 3867–3869 (2012).
[Crossref] [PubMed]

A. Ferraro, D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, and R. Beccherelli, “Flexible terahertz wire grid polarizer with high extinction ratio and low loss,” Opt. Lett. 41(9), 2009–2012 (2016).
[Crossref] [PubMed]

T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7(12), 578–580 (1982).
[Crossref] [PubMed]

H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-microm-wavelength band,” Opt. Lett. 22(6), 419–421 (1997).
[Crossref] [PubMed]

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

Phys. Rev. Lett. (1)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Science (1)

Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273(5273), 347–349 (1996).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Feng, Y. Zhao, X. W. Lin, W. Hu, F. Xu, and Y. Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors (Basel) 11(12), 2488–2495 (2011).
[Crossref] [PubMed]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Ch. 2 Surface Plasmons on Smooth Surfaces.

E. Hecht, Optics (Pearson, 2016), Chap. 8.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997), Chap. 2 and 16.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustrations: (a) a blazed WGP (bWGP) with geometrical parameters. Segments to approximate a blazed surface profile are shown. For comparison, conventional WGP (cWGP) structure is presented in (b). cWGP is assumed to have a 50% fill factor. Polarization direction of TM polarized light is shown: TE polarization into and out-of-paper. In both cases, normal light incidence is assumed in the calculation as illustrated.
Fig. 2
Fig. 2 (a) TR and (b) ER of conventional WGP (cWGP) and blazed WGP (bWGP) structures at normal incidence for λ = 400 ~600 nm and Λ = 100 ~1000 nm in a step of 100 nm. Blaze angle (θB) is changed: θB = 30° (left), 45° (middle), and 60° (right). Blue and red arrow marks the wire-grid period at which the maximum ER appears for cWGP and bWGP structure.
Fig. 3
Fig. 3 (a) TR and (b) ER at a maximum obtained over λ = 400 ~600 nm at each wire-grid period (Λ) for θB = 30°, 45°, and 60°. TR and ER were fitted, respectively, to a rational and a Pearson VII function. Correlation coefficient R2 was higher than 99% and 85% for cWGP and bWGP.
Fig. 4
Fig. 4 (a) Relative TR (RTR) between cWGP and bWGP defined as RTR = TRbWGP/TRcWGP and (b) relative ER (RER) = ERbWGP/ERcWGP. A trend of decreasing RTR and exponentially increasing RER with a longer wire-grid period and larger blaze angle is clearly visible.
Fig. 5
Fig. 5 Near-field distribution produced by WGPs: (a) bWGP (5 periods) with Λ = 800 nm for λ = 600 nm and (b) cWGP (20 periods) with Λ = 200 nm for λ = 400 nm for TM polarized light. (c) bWGP and (d) cWGP for TE polarization. These geometrical parameters produce the highest ER in each structure. For both bWGP and cWGP structures, θB = 60°.
Fig. 6
Fig. 6 (a) TR and (b) ER of a bWGP with Λ = 800 nm and θB = 60° for the ± 1st and the 0th diffraction orders. Also shown is the total transmittance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin θ out = k 0 sin θ in +m K g
k 0 sin θ out = k 0 sin θ in + m K g / n s
k sp = w c ε m ε d ε m + ε d = k 0 sin θ in
ε m ε d ε m + ε d sin θ B
ER= I TM / I TE or10log( I TM / I TE )indB

Metrics