Abstract

Illumination coherence plays a major role in various imaging systems, from microscopy, metrology, digital holography, optical coherence tomography, to ultrasound imaging. Here, we present a systematic study on the effects of degrees of spatiotemporal coherence of an illumination (DSTCI) on imaging quality of interferometric microscopy. An optical field with arbitrary DSTCI was decomposed into wavelets with constituent spatiotemporal frequencies, and the effects on image quality were quantitatively investigated. The results show the synergistic effects on reduction of speckle noise when DSTCI is decreased. This study presents a method to systematically control DSTCI, and the result provides an essential reference on the effects of DSTCI on the imaging quality. We believe that the presented methods and results can be implemented in various imaging systems for characterizing and improving the imaging quality.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy

Renjie Zhou, Di Jin, Poorya Hosseini, Vijay Raj Singh, Yang-hyo Kim, Cuifang Kuang, Ramachandra R. Dasari, Zahid Yaqoob, and Peter T. C. So
Opt. Express 25(1) 130-143 (2017)

Effects of luminance and spatial noise on interferometric contrast sensitivity

Nancy J. Coletta and Vineeta Sharma
J. Opt. Soc. Am. A 12(10) 2244-2251 (1995)

Effects of spatiotemporal averaging processes on the estimation of spectral reflectance in color digital holography using speckle illuminations

Hideki Funamizu, Shohei Shimoma, Tomonori Yuasa, and Yoshihisa Aizu
Appl. Opt. 53(30) 7072-7080 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U., 1999).
  2. S. K. Narayanan and R. Wahidabanu, “A view on despeckling in ultrasound imaging,” IJSIP 2, 85–98 (2009).
  3. E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326(6111), 363–365 (1987).
    [Crossref]
  4. J. C. Dainty, Laser Speckle and Related Phenomena (Springer Science & Business Media, 2013).
  5. W. Osten, Optical Inspection of Microsystems (CRC, 2016).
  6. S. Inoué, Video Microscopy (Springer Science & Business Media, 2013).
  7. R. Erf, Speckle Metrology (Elsevier, 2012).
  8. Z. Malacara and M. Servin, Interferogram Analysis for Optical Testing (CRC, 2016), Vol. 84.
  9. T. Kreis, “Holographic interferometry: principles and methods,” in Simulation and Experiment in Laser Metrology:Proc. of the International Symposium on Laser Applications in Precision Measurements (1996), pp. 323.
  10. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  11. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  12. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
  13. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
    [Crossref]
  14. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).
  15. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  16. F. Dubois, M.-L. Novella Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
    [Crossref] [PubMed]
  17. M. C. Pitter, C. W. See, and M. G. Somekh, “Full-field heterodyne interference microscope with spatially incoherent illumination,” Opt. Lett. 29(11), 1200–1202 (2004).
    [Crossref] [PubMed]
  18. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
    [Crossref] [PubMed]
  19. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
    [Crossref] [PubMed]
  20. Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
    [Crossref] [PubMed]
  21. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  22. K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
    [Crossref] [PubMed]
  23. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
    [Crossref] [PubMed]
  24. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
    [Crossref] [PubMed]
  25. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
    [Crossref] [PubMed]
  26. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  27. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref] [PubMed]
  28. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
    [Crossref] [PubMed]
  29. J. A. Rodrigo and T. Alieva, “Illumination coherence engineering and quantitative phase imaging,” Opt. Lett. 39(19), 5634–5637 (2014).
    [Crossref] [PubMed]
  30. S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
    [Crossref]
  31. C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
    [Crossref] [PubMed]
  32. J. Dohet-Eraly, C. Yourassowsky, A. E. Mallahi, and F. Dubois, “Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy,” Opt. Lett. 41(1), 111–114 (2016).
    [Crossref] [PubMed]
  33. J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).
  34. J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
    [Crossref] [PubMed]
  35. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  36. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
    [Crossref] [PubMed]
  37. J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
    [Crossref] [PubMed]
  38. J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
    [Crossref] [PubMed]
  39. J. Jung and Y. Park, “Experimental observations of spectral changes produced by individual microscopic spheres,” Opt. Lett. 40(6), 1093–1096 (2015).
    [Crossref] [PubMed]
  40. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  41. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [Crossref] [PubMed]

2016 (3)

2015 (2)

J. Jung and Y. Park, “Experimental observations of spectral changes produced by individual microscopic spheres,” Opt. Lett. 40(6), 1093–1096 (2015).
[Crossref] [PubMed]

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

2014 (4)

2013 (4)

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

2012 (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

2006 (2)

2004 (2)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1987 (1)

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326(6111), 363–365 (1987).
[Crossref]

1982 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[Crossref]

Alieva, T.

Badizadegan, K.

Barbastathis, G.

Bhaduri, B.

Bishara, W.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Callens, N.

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Choi, C.

Choi, W.

Choi, Y.

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Dasari, R.

Dasari, R. R.

Debnath, S. K.

Ding, H.

Dohet-Eraly, J.

Dubois, F.

Edwards, C.

Feld, M. S.

Gillette, M. U.

Goddard, L. L.

Griffin, B. G.

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Heo, J. H.

Hillman, T. R.

Horstmeyer, R.

Hoyos, M.

Ikeda, T.

Ina, H.

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Istasse, E.

Iwai, H.

Jang, J.

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Jang, S.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jung, J.

Jung, J. H.

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Kim, H. D.

Kim, K.

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kim, T.

Kim, Y.

Kim, Y.-J.

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Kobayashi, S.

Kurowski, P.

Lee, K.

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

Lee, K. J.

Lee, S.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Mallahi, A. E.

Millet, L.

Min, B.

Minetti, C.

Mir, M.

Miwa, M.

Monnom, O.

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Narayanan, S. K.

S. K. Narayanan and R. Wahidabanu, “A view on despeckling in ultrasound imaging,” IJSIP 2, 85–98 (2009).

Nguyen, T.

Novella Requena, M.-L.

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Ou, X.

Ozcan, A.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Park, H.

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Park, Y.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

J. Jung and Y. Park, “Experimental observations of spectral changes produced by individual microscopic spheres,” Opt. Lett. 40(6), 1093–1096 (2015).
[Crossref] [PubMed]

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[Crossref] [PubMed]

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[Crossref] [PubMed]

Pham, H.

Pitter, M. C.

Popescu, G.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Rodrigo, J. A.

Rogers, J.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

See, C. W.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Shim, H.

Shin, S.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Somekh, M. G.

Takeda, M.

Tian, L.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Unarunotai, S.

Wahidabanu, R.

S. K. Narayanan and R. Wahidabanu, “A view on despeckling in ultrasound imaging,” IJSIP 2, 85–98 (2009).

Waller, L.

Wang, Z.

Wolf, E.

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326(6111), 363–365 (1987).
[Crossref]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[Crossref]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yamashita, Y.

Yamauchi, T.

Yang, C.

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

Yang, T. D.

Yaqoob, Z.

Yoon, J.

Yourassowsky, C.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zheng, G.

Anal. Chem. (1)

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

IJSIP (1)

S. K. Narayanan and R. Wahidabanu, “A view on despeckling in ultrasound imaging,” IJSIP 2, 85–98 (2009).

J. Biomed. Opt. (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

J. Biomed. Photonics Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

J. Opt. Soc. Am. (1)

Lab Chip (1)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Nature (1)

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326(6111), 363–365 (1987).
[Crossref]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[Crossref]

Opt. Express (9)

K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, and Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013).
[Crossref] [PubMed]

T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
[Crossref] [PubMed]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
[Crossref] [PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, “Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells,” Opt. Express 22(9), 10398–10407 (2014).
[Crossref] [PubMed]

J. Jung and Y. Park, “Spectro-angular light scattering measurements of individual microscopic objects,” Opt. Express 22(4), 4108–4114 (2014).
[Crossref] [PubMed]

C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, and L. L. Goddard, “Effects of spatial coherence in diffraction phase microscopy,” Opt. Express 22(5), 5133–5146 (2014).
[Crossref] [PubMed]

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

Opt. Lett. (9)

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

J. Dohet-Eraly, C. Yourassowsky, A. E. Mallahi, and F. Dubois, “Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy,” Opt. Lett. 41(1), 111–114 (2016).
[Crossref] [PubMed]

J. Jung and Y. Park, “Experimental observations of spectral changes produced by individual microscopic spheres,” Opt. Lett. 40(6), 1093–1096 (2015).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Illumination coherence engineering and quantitative phase imaging,” Opt. Lett. 39(19), 5634–5637 (2014).
[Crossref] [PubMed]

Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
[Crossref] [PubMed]

M. C. Pitter, C. W. See, and M. G. Somekh, “Full-field heterodyne interference microscope with spatially incoherent illumination,” Opt. Lett. 29(11), 1200–1202 (2004).
[Crossref] [PubMed]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Shin, Y. Kim, K. Lee, K. Kim, Y.-J. Kim, H. Park, and Y. Park, “Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise,” Proc. SPIE 9336, 933629 (2015).
[Crossref]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Other (10)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U., 1999).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

J. C. Dainty, Laser Speckle and Related Phenomena (Springer Science & Business Media, 2013).

W. Osten, Optical Inspection of Microsystems (CRC, 2016).

S. Inoué, Video Microscopy (Springer Science & Business Media, 2013).

R. Erf, Speckle Metrology (Elsevier, 2012).

Z. Malacara and M. Servin, Interferogram Analysis for Optical Testing (CRC, 2016), Vol. 84.

T. Kreis, “Holographic interferometry: principles and methods,” in Simulation and Experiment in Laser Metrology:Proc. of the International Symposium on Laser Applications in Precision Measurements (1996), pp. 323.

J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Preceding studies classified by degree of spatiotemporal coherence of the illumination. Reports in which the degree of coherence was not specified are classified as “partially coherent”.
Fig. 2
Fig. 2 Schematics of interferometric imaging of a sample with a dust particle which is set apart from the sample along the optical axis. The right-side images are example phase images of a 3 μm−diameter polymethyl methacrylate bead with respect to the DSTCI. The degrees of coherence are (a) spatiotemporally coherent, (b) spatially coherent and temporally low coherent, (c) temporally coherent and spatially low coherent, and (d) spatiotemporally low coherent.
Fig. 3
Fig. 3 (a) Experimental setup. Common-path interferometry with varying spatiotemporal frequency of the illumination. The temporal frequency of the illumination is controlled by using the prism, the galvanometric mirror (GM1), and the pinhole (P1); the prism disperses an incident super-continuum laser, and the temporal frequency of light passing through P1 is controlled by the GM1. The dual-axis galvanometric mirror (GM2), which is located at the conjugate plane of a sample, controls the spatial frequency of the illumination. The other galvanometric mirror (GM3) compensates the tilted angle by the GM2 for common-path interferometric geometry. P1: pinhole (diameter = 100 μm); TL1: tube lens (f = 200 mm); CL: condenser lens, 0.9 NA; OL: objective lens, 1.42 NA; TL2: tube lens (f = 180 mm) L1: lens (f = 100 mm); L2: lens (f = 200 mm); L3,7: lenses (f = 75 mm); L4,8: lenses (f = 150 mm); L5,6: lenses (f = 100 mm); G: grating; P2: pinhole (diameter = 25 μm). (b) Temporal power spectra: center wavelength is changed from 525 nm to 667 nm with 61 steps, the mean bandwidth is 4.6 nm. (c) Spatial frequencies controlled by the GM2 in (a) are uniformly scanned within the numerical aperture (NA) 0.75 with 441 steps.
Fig. 4
Fig. 4 Representative optical field images of a PMMA microsphere illuminated with various DSTCI. The inset shows magnified images. The degree of spatial and temporal coherence of the illumination decreases along the row and column, respectively.
Fig. 5
Fig. 5 Spatial and temporal power spectra, autocorrelation functions (ACF), and coherence lengths with respect to bandwidths. (a) Representative azimuthally averaged spatial power spectra of the illuminations. Solid black, blue, and red lines correspond to the spatial frequency bandwidth (Δks) = 1.24, 1.72, and 2.37 μm−1, respectively. (b) The absolute of the spatial ACF corresponding to (a). (c) Spatial coherence lengths (ls) as a function of spatial frequency bandwidths. The fitted curve is ls = 1.22/Δks. The spatial power spectra in (a) are marked as black, blue, and red arrows, respectively. (d) Representative temporal power spectra with the center wavelength of 579 nm. Solid black, blue, and red lines correspond to the wavelength bandwidth (Δλ) of 13.7, 21.9, and 44.7 nm, respectively. (e) The absolute of the temporal ACF corresponding to (d). (f) Temporal coherence lengths (lt) with respect to wavelength bandwidths. The fitted curve is lt = λ2/(nmediumΔλ), where nmedium is the refractive index of the medium. The temporal power spectra in (d) are marked as black, blue, and red arrows, respectively.
Fig. 6
Fig. 6 Speckle noise quantified as the spatial phase standard deviation (σφ) with respect to the spatial and temporal coherence lengths (ls, lt). (a) Measured σφ are presented by black dots corresponding to the spatial and temporal coherence lengths, and the surface plot is obtained by the linear interpolation from the measured results for visualization purposes. (b-c) A cross-sectional view of (a) at the lt = 63.3 μm and ls = 11.8 μm, respectively. Error bars represent standard errors of the mean at each point. In (b), error bars are too small to be shown. The red circle marker in (c) corresponds to a coherent illumination.
Fig. 7
Fig. 7 (a) Phasor sum representation for the sum of complex amplitudes of various illumination temporal frequencies. (b) Scheme of a resultant interference signal from two plane wave illuminations with randomly varying relative phase.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I = | S + R | 2 T = n = 1 2 Re [ A n 2 + 1 + A n e j φ n × e j θ + A n e j φ n × e j θ ] ,
S = Re [ A 1 e j φ 1 × e j ( k 1 z ω 1 t + ϕ 1 ( k 1 , ω 1 ) ) + A 2 e j φ 2 × e j ( k 2 z ω 2 t + ϕ 2 ( k 2 , ω 2 ) ) ] ,
R = Re [ { e j ( k 1 z ω 1 t + ϕ 1 ( k 1 , ω 1 ) ) + e j ( k 2 z ω 2 t + ϕ 2 ( k 2 , ω 2 ) ) } × e j θ ] .
S R * T = Re [ ( A 1 e j φ 1 + A 2 e j φ 2 + A 1 e j φ 1 × e j ( ( k 1 k 2 ) z ( ω 1 ω 2 ) t + ( ϕ 1 ( k 1 , ω 1 ) ϕ 2 ( k 2 , ω 2 ) ) ) + A 2 e j φ 2 × e j ( ( k 1 k 2 ) z ( ω 1 ω 2 ) t + ( ϕ 1 ( k 1 , ω 1 ) ϕ 2 ( k 2 , ω 2 ) ) ) ) × e j θ T ] = Re [ ( A 1 e j φ 1 + A 2 e j φ 2 ) × e j θ ] .
Δ ϕ = Δ ( k n z + φ n ) = Δ ( 2 π ( z + n d ) λ n ) = 2 π ( z + n d ) Δ λ λ 0 2 2 π z + n d l t ,
S = Re [ A 1 e j φ 1 × e j ( k 1 r ω t + ϕ 1 ( k 1 ) ) + A 2 e j φ 2 × e j ( k 2 r ω t + ϕ 2 ( k 2 ) ) ] ,
R = Re [ { e j ( k 1 r ω t + ϕ 1 ( k 1 ) ) + e j ( k 2 r ω t + ϕ 2 ( k 2 ) ) } × e j θ ] .
S R * T = Re [ ( A 1 e j φ 1 + A 2 e j φ 2 + A 1 e j φ 1 × e j ( ( k 1 k 2 ) r + ( ϕ 1 ( k 1 ) ϕ 2 ( k 2 ) ) ) + A 2 e j φ 2 × e j ( ( k 1 k 2 ) r + ( ϕ 1 ( k 1 ) ϕ 2 ( k 2 ) ) ) ) × e j θ T ] = Re [ ( A 1 e j φ 1 + A 2 e j φ 2 ) × e j θ ]

Metrics