Abstract

Dual-comb system with simplified integration acts a crucial role in the next stage of field-deployable application. Here we demonstrate a home-made dual-comb spectrometer that meets this requirement based on optically stabilized erbium-fiber frequency combs. The simplified integration and operability are highlighted by the embedded large motion-span automatic optical delay line that resulted in 1.7 MHz of continuous repetition rate tuning range and avoid multiple fiber cutbacks. This relaxes the second similar frequency comb duplication, therefore simplifies dual-comb system integration. The mutual coherence was enhanced by optical phase lock to a common narrow-linewidth reference laser via pump current modulation. We acquired the absorption feature of acetylene 12C2H2 molecule in 1.5 μm region with an apodized instrument linewidth of 0.076 cm−1. The mean signal-to-noise ratio within a spectral bandwidth of 90 cm−1 achieved 280, and the corresponding noise equivalent absorption coefficient was 3.7 × 10−6 cm−1·Hz-1/2 for an absorption path of 7.5 cm and a pressure of 100 Torr. The accuracy of the retrieved spectrum was further confirmed by comparing with HITRAN database.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-comb spectroscopy with a single free-running thulium-doped fiber laser

Ruoyu Liao, Youjian Song, Wu Liu, Haosen Shi, Lu Chai, and Minglie Hu
Opt. Express 26(8) 11046-11054 (2018)

Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate

Sargis Hakobyan, Valentin J. Wittwer, Pierre Brochard, Kutan Gürel, Stéphane Schilt, Aline S. Mayer, Ursula Keller, and Thomas Südmeyer
Opt. Express 25(17) 20437-20453 (2017)

Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate

Honglei Yang, Xuejian Wu, Hongyuan Zhang, Shijie Zhao, Lijun Yang, Haoyun Wei, and Yan Li
Appl. Opt. 55(34) D29-D34 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  2. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
    [Crossref] [PubMed]
  3. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  4. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  5. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
    [Crossref]
  6. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
    [Crossref]
  7. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref] [PubMed]
  8. M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
    [Crossref]
  9. J. Roy, J. D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
    [Crossref] [PubMed]
  10. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  11. A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
    [Crossref]
  12. R. Glenn and S. Mukamel, “Nonlinear transmission spectroscopy with dual frequency combs,” Phys. Rev. A 90(2), 023804 (2014).
    [Crossref]
  13. T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
    [Crossref] [PubMed]
  14. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  15. W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
    [Crossref] [PubMed]
  16. F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
    [Crossref]
  17. H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
    [Crossref]
  18. S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
    [Crossref]
  19. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  20. H. Yang, H. Wei, H. Zhang, K. Chen, Y. Li, V. O. Smolski, and K. L. Vodopyanov, “Performance estimation of dual-comb spectroscopy in different frequency-control schemes,” Appl. Opt. 55(23), 6321–6330 (2016).
    [Crossref] [PubMed]
  21. P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
    [Crossref]
  22. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
    [Crossref]
  23. S. Mehravar, R. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
    [Crossref]
  24. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  25. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
    [Crossref]
  26. M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
    [Crossref] [PubMed]
  27. G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, and N. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
    [Crossref]
  28. F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
    [Crossref] [PubMed]
  29. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
    [Crossref]
  30. L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
    [Crossref] [PubMed]
  31. http://www.menlosystems.com/products
  32. X. Wu, L. Yang, H. Zhang, H. Yang, H. Wei, and Y. Li, “Hybrid mode-locked Er-fiber oscillator with a wide repetition rate stabilization range,” Appl. Opt. 54(7), 1681–1687 (2015).
    [Crossref]
  33. H. Yang, X. Wu, H. Zhang, S. Zhao, L. Yang, H. Wei, and Y. Li, “Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate,” Appl. Opt. 55(34), D29–D34 (2016).
    [Crossref] [PubMed]
  34. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  35. A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
    [Crossref] [PubMed]
  36. H. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
    [Crossref]

2016 (9)

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

S. Mehravar, R. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

H. Yang, H. Wei, H. Zhang, K. Chen, Y. Li, V. O. Smolski, and K. L. Vodopyanov, “Performance estimation of dual-comb spectroscopy in different frequency-control schemes,” Appl. Opt. 55(23), 6321–6330 (2016).
[Crossref] [PubMed]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

H. Yang, X. Wu, H. Zhang, S. Zhao, L. Yang, H. Wei, and Y. Li, “Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate,” Appl. Opt. 55(34), D29–D34 (2016).
[Crossref] [PubMed]

2015 (6)

X. Wu, L. Yang, H. Zhang, H. Yang, H. Wei, and Y. Li, “Hybrid mode-locked Er-fiber oscillator with a wide repetition rate stabilization range,” Appl. Opt. 54(7), 1681–1687 (2015).
[Crossref]

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

2014 (6)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

R. Glenn and S. Mukamel, “Nonlinear transmission spectroscopy with dual frequency combs,” Phys. Rev. A 90(2), 023804 (2014).
[Crossref]

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, and N. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

2013 (2)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

2012 (2)

2011 (3)

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

2010 (1)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

2009 (2)

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2002 (2)

H. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[Crossref] [PubMed]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Acedo, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Adler, F.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Ban, T.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Baumann, E.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, and N. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Briles, T. C.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Cassinerio, M.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Chen, K.

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, and N. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Coluccelli, N.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Cossel, K. C.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Cromer, C.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Deschênes, J. D.

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

J. Roy, J. D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
[Crossref] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Droste, S.

S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

Foltynowicz, A.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Galzerano, G.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Gambetta, A.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Genest, J.

Giorgetta, F.

Giorgetta, F. R.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Glenn, R.

R. Glenn and S. Mukamel, “Nonlinear transmission spectroscopy with dual frequency combs,” Phys. Rev. A 90(2), 023804 (2014).
[Crossref]

Goda, K.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Hänsch, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hänsch, T. W.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

Hipke, A.

A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hong, F.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hosaka, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Hu, G.

Ideguchi, T.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

Inaba, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Khader, I. H.

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Kieu, K.

S. Mehravar, R. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Kobayashi, Y.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Kofler, J.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, and N. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

Laporta, P.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Li, C.

Li, Y.

Lipphardt, B.

H. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

Liu, Y.

Martin-Mateos, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Maslowski, P.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Meek, S. A.

A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

Mehravar, S.

S. Mehravar, R. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Mukamel, S.

R. Glenn and S. Mukamel, “Nonlinear transmission spectroscopy with dual frequency combs,” Phys. Rev. A 90(2), 023804 (2014).
[Crossref]

Nakamura, T.

Nenadovic, L.

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, and N. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Norwood, R.

S. Mehravar, R. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Okubo, S.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Onae, A.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pan, Y.

Petron, G.

Peyghambarian, N.

S. Mehravar, R. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Posada-Roman, J.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Potvin, S.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Rieker, G.

Rieker, G. B.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

Roy, J.

Ruiz-Llata, M.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Sasada, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Schiller, S.

Sinclair, L.

Sinclair, L. C.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Smolski, V. O.

Sonderhouse, L.

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Stenger, J.

H. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Suh, M. G.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Swann, W.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, and N. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Swann, W. C.

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Sweeney, C.

Tans, P.

Telle, H.

H. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Vahala, K. J.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Vodopyanov, K. L.

Washburn, B.

S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Wei, H.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Wu, X.

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Yang, H.

Yang, K. Y.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Yang, L.

Yang, Q. F.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Yasui, T.

Ycas, G.

S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Ye, J.

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

Yi, X.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Zhang, H.

Zhao, B.

Zhao, S.

Zhao, X.

Zheng, Z.

Zolot, A.

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

H. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Appl. Phys. Lett. (3)

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108(18), 181101 (2016).
[Crossref]

S. Mehravar, R. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Faraday Discuss. (1)

A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, “Optical frequency comb spectroscopy,” Faraday Discuss. 150, 23–31 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Nanophotonics (1)

S. Droste, G. Ycas, B. Washburn, I. Coddington, and N. Newbury, “Optical frequency comb generation based on Erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Nat. Commun. (1)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Optica (3)

Phys. Rev. A (3)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

R. Glenn and S. Mukamel, “Nonlinear transmission spectroscopy with dual frequency combs,” Phys. Rev. A 90(2), 023804 (2014).
[Crossref]

Phys. Rev. Lett. (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

L. C. Sinclair, J. D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref] [PubMed]

Other (1)

http://www.menlosystems.com/products

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Top view of the femtosecond oscillators. (b) Output spectra from the both lasers. (c-e) Pulse durations at the repetition rate of 97.84 MHz, 98.79 MHz and 99.52 MHz, respectively. (f-h) give the corresponding spectral bandwidths. The scan range of the autocorrelator (PulseCheck50, APE) is 1.5 ps, and the resolution bandwidth of the optical spectrum analyzer (86142B, Agilent) is 1 nm.
Fig. 2
Fig. 2 Simplified diagram of the home-integrated dual-comb spectrometer. H: half waveplate, P: pellicle, M: Mirror, BPF: optical bandpass filter, GC: gas cell, PD: photodiode, FPGA: FPGA-based data acquisition board.
Fig. 3
Fig. 3 Three RF-to-optical mappings in our case. Among these, (a) is corresponding to the sub-band measurement with BPF centered at 1540 nm, and (c) is to both with BPF centered at 1520 nm and 1530 nm. (b) is a puzzling scenario and excluded.
Fig. 4
Fig. 4 Obtained optical spectra in different sub bands. The passband of the 1520-nm BPF almost shifts to1526 nm. The sub-band measurement through the 1540-nm BPF is drawn with the blue curve, while the 1530-nm is red curve and the 1520-nm is green curve. BPF15X0: optical bandpass filter centered at 15X0 nm (X = 2,3,4).
Fig. 5
Fig. 5 Stitched transmission of the 12C2H2 sample. The P branch of the ν 1 + ν 3 cold band is clearly represented along with portions of the ν 4 = 1 and ν 5 = 1 hot bands. (a-c) Expanded view of the transmission in sub-band measurements.
Fig. 6
Fig. 6 (a) Comparison between the single-shot and 100-times averaged transmission. (b) SNR improvement against the square root of averaging times.
Fig. 7
Fig. 7 Deviations between the retrieved P branch in ν 1 + ν 3 cold band and HITRAN. The center frequencies and peak values of the measured absorption lines are labeled by red dots, while those from HITRAN database are blue dots. The frequency deviations are the horizontal offsets between blue and red dots, while the magnitude deviations show the vertical offsets.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ν BPF1540 = ( ν CW + f b ) + f rep1 Δ f rep ( f rep1 f RF,BPF1540 2 f b )
ν BPF1530 = ( ν CW + f b ) + f rep1 Δ f rep ( f rep1 f RF,BPF1530 )
ν BPF1520 = ( ν CW + f b ) + f rep1 Δ f rep ( f rep1 f RF,BPF1520 )
N E A = ( L × S N R ) 1
N E A uni = N E A T M

Metrics