Abstract

We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5S1/2) to the excited state (4D5/2), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lifetime and hyperfine splitting measurements on the 7s and 6p levels in rubidium

E. Gomez, S. Aubin, L. A. Orozco, and G. D. Sprouse
J. Opt. Soc. Am. B 21(11) 2058-2067 (2004)

Single atom Rydberg excitation in a small dipole trap

Zhanchun Zuo, Miho Fukusen, Yoshihito Tamaki, Tomoki Watanabe, Yusuke Nakagawa, and Ken’ichi Nakagawa
Opt. Express 17(25) 22898-22905 (2009)

Two-photon spectroscopy of the 6S1/2 → 6D5/2 transition of trapped atomic cesium

N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble
Opt. Lett. 19(18) 1474-1476 (1994)

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled yb-doped fibre laser,” Metrologia 43, 294 (2006).
    [Crossref]
  2. H. Ohadi, M. Himsworth, A. Xuereb, and T. Freegarde, “Magneto-optical trapping and background-free imaging for atoms near nanostructured surfaces,” Opt. Express 17, 23003–23009 (2009).
    [Crossref]
  3. L. Vasilenko, V. Chebotaev, and A. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” ZhETF Pisma Redaktsiiu 12, 161 (1970).
  4. B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet doppler,” Journal de Physique 34, 845–858 (1973).
    [Crossref]
  5. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
    [Crossref] [PubMed]
  6. I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
    [Crossref]
  7. G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys 40, 791 (1977).
    [Crossref]
  8. Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).
  9. R. E. Ryan, L. A. Westling, and H. J. Metcalf, “Two-photon spectroscopy in rubidium with a diode laser,” J. Opt. Soc. Am. B 10, 1643–1648 (1993).
    [Crossref]
  10. A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
    [Crossref]
  11. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
    [Crossref]
  12. W. K. Lee, H. S. Moon, and H. S. Suh, “Measurement of the absolute energy level and hyperfine structure of the 87Rb 4D5/2 state,” Opt. Lett. 32, 2810–2812 (2007).
    [Crossref] [PubMed]
  13. J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
    [Crossref]
  14. W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92, 012501 (2015).
    [Crossref]
  15. R. Roy, “An integrated atom chip for the detection and manipulation of cold atoms using a two-photon transition,” Ph.D. thesis, Centre for Quantum Technologies, National University of Singapore (2015).
  16. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
    [Crossref] [PubMed]
  17. G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
    [Crossref]

2015 (1)

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92, 012501 (2015).
[Crossref]

2014 (2)

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
[Crossref]

2013 (1)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2006 (3)

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[Crossref]

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled yb-doped fibre laser,” Metrologia 43, 294 (2006).
[Crossref]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

1993 (1)

1977 (2)

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys 40, 791 (1977).
[Crossref]

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

1973 (1)

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet doppler,” Journal de Physique 34, 845–858 (1973).
[Crossref]

1970 (1)

L. Vasilenko, V. Chebotaev, and A. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” ZhETF Pisma Redaktsiiu 12, 161 (1970).

1962 (1)

I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
[Crossref]

Abella, I. D.

I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
[Crossref]

Arimondo, E.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

Biraben, F.

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet doppler,” Journal de Physique 34, 845–858 (1973).
[Crossref]

Cagnac, B.

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys 40, 791 (1977).
[Crossref]

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet doppler,” Journal de Physique 34, 845–858 (1973).
[Crossref]

Carlson, E. J.

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[Crossref]

Cerè, A.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Chapman, M. S.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Chebotaev, V.

L. Vasilenko, V. Chebotaev, and A. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” ZhETF Pisma Redaktsiiu 12, 161 (1970).

Chng, B.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Freegarde, T.

Grynberg, G.

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys 40, 791 (1977).
[Crossref]

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet doppler,” Journal de Physique 34, 845–858 (1973).
[Crossref]

Gulati, G. K.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Himsworth, M.

Inguscio, M.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Kurtsiefer, C.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Lee, W. K.

Lee, W.-K.

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92, 012501 (2015).
[Crossref]

Liu, H.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
[Crossref]

Ma, L.-S.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled yb-doped fibre laser,” Metrologia 43, 294 (2006).
[Crossref]

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Matsukevich, D.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Mayer, S. K.

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[Crossref]

Metcalf, H. J.

Moon, H. S.

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92, 012501 (2015).
[Crossref]

W. K. Lee, H. S. Moon, and H. S. Suh, “Measurement of the absolute energy level and hyperfine structure of the 87Rb 4D5/2 state,” Opt. Lett. 32, 2810–2812 (2007).
[Crossref] [PubMed]

Ohadi, H.

Olson, A. J.

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[Crossref]

Robertsson, L.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled yb-doped fibre laser,” Metrologia 43, 294 (2006).
[Crossref]

Roy, R.

R. Roy, “An integrated atom chip for the detection and manipulation of cold atoms using a two-photon transition,” Ph.D. thesis, Centre for Quantum Technologies, National University of Singapore (2015).

Ryan, R. E.

Shishaev, A.

L. Vasilenko, V. Chebotaev, and A. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” ZhETF Pisma Redaktsiiu 12, 161 (1970).

Srivathsan, B.

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

Suh, H. S.

Vasilenko, L.

L. Vasilenko, V. Chebotaev, and A. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” ZhETF Pisma Redaktsiiu 12, 161 (1970).

Violino, P.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

Wallerand, J.-P.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled yb-doped fibre laser,” Metrologia 43, 294 (2006).
[Crossref]

Wang, J.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
[Crossref]

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
[Crossref]

Wei, Z.

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

Westling, L. A.

Xu, C.

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

Xuereb, A.

Yang, B.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
[Crossref]

Yang, G.

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
[Crossref]

Zhang, Y.

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

Zhang, Z.

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

Zhong, X.

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

Zhou, B.

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

Zou, Y.

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

Zucco, M.

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled yb-doped fibre laser,” Metrologia 43, 294 (2006).
[Crossref]

Am. J. Phys. (1)

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Journal de Physique (1)

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet doppler,” Journal de Physique 34, 845–858 (1973).
[Crossref]

Metrologia (1)

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled yb-doped fibre laser,” Metrologia 43, 294 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, “Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly,” Phys. Rev. A 90, 052505 (2014).
[Crossref]

W.-K. Lee and H. S. Moon, “Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb,” Phys. Rev. A 92, 012501 (2015).
[Crossref]

G. K. Gulati, B. Srivathsan, B. Chng, A. Cerè, D. Matsukevich, and C. Kurtsiefer, “Generation of an exponentially rising single-photon field from parametric conversion in atoms,” Phys. Rev. A 90, 033819 (2014).
[Crossref]

Phys. Rev. Lett. (3)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref] [PubMed]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
[Crossref]

Rep. Prog. Phys (1)

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys 40, 791 (1977).
[Crossref]

Rev. Mod. Phys. (1)

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–75 (1977).
[Crossref]

ZhETF Pisma Redaktsiiu (1)

L. Vasilenko, V. Chebotaev, and A. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” ZhETF Pisma Redaktsiiu 12, 161 (1970).

Other (2)

Z. Wei, B. Zhou, C. Xu, X. Zhong, Y. Zhang, Y. Zou, and Z. Zhang, All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media (INTECH Open Access Publisher, 2012).

R. Roy, “An integrated atom chip for the detection and manipulation of cold atoms using a two-photon transition,” Ph.D. thesis, Centre for Quantum Technologies, National University of Singapore (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Rb 5S to 5D and 5S to 7S two-photon transition schemes. For both these transitions, the respective virtual intermediate levels (shown in dotted line), is blue-detuned from the 5P3/2 state and the atom decays back to the ground state from the excited state via 6P3/2 level emitting photon of 420.3 nm. (b) Rb 5S to 4D and 5S to 6S two-photon transition schemes. For both these transitions, the respective virtual intermediate levels (shown in dotted line), is red-detuned from the 5P3/2 state and the atom decays back to the ground state from the excited state via 5P3/2 level emitting photon of 780.2 nm. For both the Figs. 5P3/2 state represents the real intermediate state (r).

Fig. 2
Fig. 2

At the top, the layout of the seed laser setup. At the bottom right, the layout of the fiber amplifier is shown. At the bottom left the spectroscopy setup is shown. PD: photodetector; λ/n: λ/n wave plate; f: focal length of lens in mm; OI: optical isolator; PBS: polarization beam splitter; FC: fiber coupler, FP: Fabry-Perot, WDM: wavelength-division multiplexer, AOM: acusto-optical modulator; EOM: electro-optical modulator; PMT: photomultiplier tube, Filter: 780 nm interference filter. Thick arrows signify higher power.

Fig. 3
Fig. 3

(a) The hyperfine splitting for the 87Rb, 5S1/2 to 4D5/2 transitions and (b) for the 85Rb, 5S1/2 to 4D5/2 transitions. For the two-photon transition the allowed transitions are ΔF = 0, ±1, ±2.

Fig. 4
Fig. 4

Sidebands of 12.5 MHz is used as the frequency marker for the measurement of the hyperfine splittings. Around 100 spectra are used to determine the frequency scale.

Fig. 5
Fig. 5

The hyperfine splitting (HFS) of the 87Rb and 85Rb 4D5/2 state is measured by a one-colour two-photon excitation from the (a) 87Rb ground hyperfine level F=2, (b) 87Rb ground hyperfine level F=1, (c) 85Rb ground hyperfine level F=3, and (d) 85Rb ground hyperfine level F=2. The latest reported HFS values from literature [14] for the 87Rb (F′=4) to (F′=3)= 63.826 MHz, 87Rb (F′=3) to (F′=2) = 52.188 MHz, 85Rb (F′=5) to (F′=4)= 20.749 MHz, and 85Rb (F′=4) to (F′=3)= 20.462 MHz.

Fig. 6
Fig. 6

The error signal of the 87Rb, F=2 to F′=4, 3, 2, 1 transitions without averaging.

Fig. 7
Fig. 7

The two-photon excitation, using a focused dipole trap beam, where the excitation is localized to the Rayleigh volume, deactivating the fluorescence from the other part of the dipole beam. This non-linear imaging of atoms, beats the diffraction limit and provides high-resolution. The two-photon emission probability (blue) and single photon emission probability (red) along: (a) the axial and (b) the radial directions are plotted. The theoretical plots, for a 3 µm spot size, show that using the two-photon transition scheme, which is proportional to the square of the intensity, it is possible to achieve higher resolution.

Tables (1)

Tables Icon

Table 1 The two-photon transition probabilities for various excited states of Rb. The transition probability is normalized to the 5S to 5D transition probability.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H H F S = A I J + B 3 ( I J ) 2 + 3 2 ( I J ) I ( I + 1 ) J ( J + 1 ) 2 I ( 2 I 1 ) J ( 2 J 1 ) ,
w z = w 0 1 + ( z z R ) 2 ,

Metrics