Abstract

Integration of optically active materials into whispering gallery mode (WGM) cavities enables low-threshold laser emission. In contrast to their passive counterparts, the WGMs of these microlasers can be pumped and read out easily via free-space optics. The WGMs interact with the cavity environment via their evanescent field, and thus lend themselves to label-free bio-sensing. The detection limit of such sensors, given as the ratio of the resolution of the whole measurement system to the sensitivity of the WGMs, is an important figure of merit. In this work we show that the detection limit of polymeric microdisk lasers can be improved by more than a factor of seven by optimizing their radius and thickness. We use the bulk refractive index sensitivity, the magnitude of the sensor reaction towards refractive index changes of the bulk environment, to quantify the sensing performance and show that it can be enhanced while the spectral resolution is maintained. Furthermore, we investigate the effect of the size of the cavity on the quality factor and the lasing threshold in an aqueous environment, hence allowing optimization of the cavity size for enhanced sensor performance. For all considered quantities, numerically computed expectations are verified by experimental results.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Lasing of whispering gallery modes in optofluidic microcapillaries

Alexandre François, Nicolas Riesen, Kirsty Gardner, Tanya M. Monro, and Al Meldrum
Opt. Express 24(12) 12466-12477 (2016)

Optimization of whispering gallery resonator design for biosensing applications

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro
Opt. Express 23(13) 17067-17076 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  2. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
    [Crossref] [PubMed]
  3. J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
    [Crossref] [PubMed]
  4. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102(18), 183106 (2013).
    [Crossref]
  5. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [Crossref] [PubMed]
  6. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  7. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  9. Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
    [Crossref]
  10. H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6, 32668 (2016).
    [Crossref] [PubMed]
  11. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
    [Crossref]
  12. L. Yang, T. Lu, T. Carmon, B. Min, and K. J. Vahala, “A 4-Hz fundamental linewidth on-chip microlaser,” in CLEO, San Jose (2007), pp. 4–5.
  13. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  14. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [Crossref]
  15. T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23(13), 17067–17076 (2015).
    [Crossref] [PubMed]
  16. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
    [Crossref]
  17. T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
    [Crossref] [PubMed]
  18. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
    [Crossref]
  19. T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
    [Crossref]
  20. G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
    [Crossref]
  21. U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
    [Crossref] [PubMed]
  22. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A  137(7,8), 394–397 (1989).
  23. A. Dupuis, N. Guo, B. Gauvreau, A. Hassani, E. Pone, F. Boismenu, and M. Skorobogatiy, ““Colorful” solid-core Bragg fibers guiding in the visible,” Opt. Lett. 32(19), 2882–2884 (2008).
    [Crossref] [PubMed]
  24. F. P. Schäfer, ed., Dye Lasers (Springer, 1990).
  25. T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
    [Crossref] [PubMed]
  26. R. M. Waxler, D. Horowitz, and A. Feldman, “Optical and physical parameters of Plexiglas 55 and Lexan,” Appl. Opt. 18(1), 101–104 (1979).
    [Crossref] [PubMed]
  27. D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
    [Crossref]

2016 (1)

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6, 32668 (2016).
[Crossref] [PubMed]

2015 (5)

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro, “Optimization of whispering gallery resonator design for biosensing applications,” Opt. Express 23(13), 17067–17076 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

2014 (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

2013 (2)

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102(18), 183106 (2013).
[Crossref]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

2010 (2)

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

2009 (1)

2008 (4)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

A. Dupuis, N. Guo, B. Gauvreau, A. Hassani, E. Pone, F. Boismenu, and M. Skorobogatiy, ““Colorful” solid-core Bragg fibers guiding in the visible,” Opt. Lett. 32(19), 2882–2884 (2008).
[Crossref] [PubMed]

2006 (1)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

1996 (1)

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A  137(7,8), 394–397 (1989).

1979 (1)

1966 (1)

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
[Crossref]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Afshar, S. V.

Agarwal, A.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Bacher, A.

Balakireva, I. V.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Beck, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Becker, H.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Bog, U.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Boismenu, F.

Bowen, W. P.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102(18), 183106 (2013).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A  137(7,8), 394–397 (1989).

Brinkmann, F.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Chandrahalim, H.

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6, 32668 (2016).
[Crossref] [PubMed]

Chembo, Y. K.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Christiansen, M. B.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Coillet, A.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Dalton, R.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Dupuis, A.

Eschenbaum, C.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Fan, X.

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6, 32668 (2016).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Feldman, A.

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

François, A.

Freude, W.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Friedmann, C.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Fuchs, H.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Fuchs, J.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Gauvreau, B.

Gohn-Kreuz, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A  137(7,8), 394–397 (1989).

Grossmann, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Guo, N.

Guo, Z.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Gupta, G.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Hall, J. M. M.

Hassani, A.

Hauser, M.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Henderson, M. R.

Henriet, R.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Hirtz, M.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Holler, S.

Horowitz, D.

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Hu, J.

Ilchenko, V. S.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A  137(7,8), 394–397 (1989).

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Jen, A. K.-Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Kalt, H.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Karl, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Khoshsima, M.

Kimerling, L. C.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Klinkhammer, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Knittel, J.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102(18), 183106 (2013).
[Crossref]

Koeber, S.

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Koos, C.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Kraemmer, S.

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Kristensen, A.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Larger, L.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Lemmer, U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Liao, Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Luo, J.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Mappes, T.

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Monro, T. M.

Nicholls, S. J.

Nienhaus, G. U.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Pau, S.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Pfeifle, J.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Pone, E.

Quan, H.

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Rand, S. C.

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6, 32668 (2016).
[Crossref] [PubMed]

Reynolds, T.

Riesen, N.

Saleh, K.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Savchenkov, A. A.

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Schindler, P.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Schleede, S.

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Schmidt, S.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Siegle, T.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Skorobogatiy, M.

Solimini, D.

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Steier, W. H.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

Sun, X.

Swaim, J. D.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102(18), 183106 (2013).
[Crossref]

Teraoka, I.

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Vannahme, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Waxler, R. M.

Weimann, C.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Weinzierl, U.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

White, I. M.

Wienhold, T.

T. Wienhold, S. Kraemmer, A. Bacher, H. Kalt, C. Koos, S. Koeber, and T. Mappes, “Efficient free-space read-out of WGM lasers using circular micromirrors,” Opt. Express 23(2), 1025–1034 (2015).
[Crossref] [PubMed]

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Wondimu, S. F.

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Adv Sci (Weinh) (1)

U. Bog, F. Brinkmann, S. F. Wondimu, T. Wienhold, S. Kraemmer, C. Koos, H. Kalt, M. Hirtz, H. Fuchs, S. Koeber, and T. Mappes, “Densely packed microgoblet laser pairs for cross-referenced biomolecular detection,” Adv Sci (Weinh) 2(10), 1500066 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102(18), 183106 (2013).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 63304 (2010).
[Crossref]

J. Appl. Phys. (1)

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37(8), 3314–3315 (1966).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

G. Gupta, W. H. Steier, Y. Liao, J. Luo, R. Dalton, and A. K.-Y. Jen, “„Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112(21), 8051–8060 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Guo, H. Quan, and S. Pau, “Near-field gap effects on small microcavity whispering-gallery mode resonators,” J. Phys. D Appl. Phys. 39(24), 5133–5136 (2006).
[Crossref]

Lab Chip (1)

T. Wienhold, S. Kraemmer, S. F. Wondimu, T. Siegle, U. Bog, U. Weinzierl, S. Schmidt, H. Becker, H. Kalt, T. Mappes, S. Koeber, and C. Koos, “All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers,” Lab Chip 15(18), 3800–3806 (2015).
[Crossref] [PubMed]

Light Sci. Appl. (1)

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2(5), e82 (2013).
[Crossref]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Lett. (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A  137(7,8), 394–397 (1989).

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Phys. Rev. Lett. (1)

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114(9), 093902 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Chandrahalim, S. C. Rand, and X. Fan, “Fusion of renewable ring resonator lasers and ultrafast laser inscribed photonic waveguides,” Sci. Rep. 6, 32668 (2016).
[Crossref] [PubMed]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Other (2)

L. Yang, T. Lu, T. Carmon, B. Min, and K. J. Vahala, “A 4-Hz fundamental linewidth on-chip microlaser,” in CLEO, San Jose (2007), pp. 4–5.

F. P. Schäfer, ed., Dye Lasers (Springer, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM image of a microdisk cavity with a radius of R = 8.75 µm and a thickness of d = 0.9 µm.

Fig. 2
Fig. 2

Typical lasing spectrum of a microdisk cavity in aqueous environment. Different lasing modes separated by the free spectral range (FSR) serve as sensor signal. A pump fluence of 10 mJ/cm2 was used to acquire this spectrum.

Fig. 3
Fig. 3

Example of a typical BRIS measurement. (a) Spectral shift of one lasing mode over time, when the microdisk is alternately surrounded by pure water (base line) and water-glycerol mixtures with increasing refractive indices (n1 = 1.3336, n2 = 1.3342, n3 = 1.3347, n4 = 1.3352, n5 = 1.3357 and nwater = 1.3329). (b) BRIS is obtained from the slope of a linear fit (red) applied to the measured spectral shift (black square). A pump fluence of 10 mJ/cm2 was used.

Fig. 4
Fig. 4

BRIS values for microdisks of varying radius (a) and varying thickness (b). With decreasing radius and thickness, an enhancement of the BRIS is observed due to higher overlap of the WGMs with the environment. The results from FEM simulations (green and blue lines) are in good agreement with the measured data. Since the lasing wavelength range during the experiments decreased with decreasing radius or thickness, simulations were performed for confining wavelengths of 560 nm and 630 nm. Data points in red are attributed to fundamental modes while the black data points in (a) are attributed to higher order modes. In (a) each data point corresponds to a single measurement while in (b) the mean value is shown since only fundamental modes were present.

Fig. 5
Fig. 5

Q-factors of microdisk cavities of varying radius and constant thickness (d = 0.9 µm) (a) and varying thickness and constant radius (R = 25 µm) (b) in aqueous environment – experimentally determined values (black data points) and simulation results of the radiation-limited Q-factor (green). For small radii and thicknesses, radiation is the dominating loss channel whereas, for larger radii and thicknesses scattering losses limit the Q-factor (area marked in grey). There are no errors bars for the Q-factors of disks with a radius of R = 7.5 µm in (a) since only one resonator was investigated.

Fig. 6
Fig. 6

(a) Typical input-output curve to determine the lasing threshold. (b) and (c) Calculated and measured lasing thresholds in aqueous environment of microdisk cavities of varying radius and thickness. With decreasing radius and thickness the lasing threshold increases due to lower Q-factors and for the latter also due to the reduced thickness of the cavity. The grey area marks the regime where the scattering losses limit the Q-factor.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Q 1 = Q abs 1 + Q rad 1 + Q scat 1
Q rad = ω real 2 ω imag
P th = γh c 0 τ λ P σ a 2 ( λ P ) n t d
P th γ(λ) 2πn λQ n t + σ a (λ) σ a (λ)+ σ e (λ)
σ a (λ)=0.385 10 20 ϵ(λ),
σ e (λ)= λ 4 f(λ) Φ f 8π c 0 n 2 τ
DL= R S

Metrics