Abstract

We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities <0.1 within a few minutes of averaging and an instrument response time of <46 fs thereby demonstrating that that simple broadband continuum sources, although weak, are sufficient to create high quality 2D spectra with >200 nm bandwidth.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
    [Crossref] [PubMed]
  2. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
    [Crossref] [PubMed]
  3. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
    [Crossref] [PubMed]
  4. J. Dostál, F. Vácha, J. Pšenčík, and D. Zigmantas, “2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome,” J. Phys. Chem. Lett. 5(10), 1743–1747 (2014).
    [Crossref] [PubMed]
  5. E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340(6128), 52–56 (2013).
    [Crossref] [PubMed]
  6. Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
    [Crossref] [PubMed]
  7. F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
    [PubMed]
  8. J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
    [Crossref] [PubMed]
  9. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
    [Crossref] [PubMed]
  10. J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
    [Crossref] [PubMed]
  11. J. R. Caram, A. F. Fidler, and G. S. Engel, “Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy,” J. Chem. Phys. 137(2), 024507 (2012).
    [Crossref] [PubMed]
  12. N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular Aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
    [Crossref] [PubMed]
  13. R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
    [Crossref] [PubMed]
  14. M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
    [Crossref] [PubMed]
  15. J. P. Ogilvie and K. J. Kubarych, “Chapter 5 Multidimensional Electronic and Vibrational Spectroscopy: An Ultrafast Probe of Molecular Relaxation and Reaction Dynamics,” in Advances In Atomic, Molecular, and Optical Physics (Academic Press, 2009), pp. 249–321.
  16. T. A. Gellen, L. A. Bizimana, W. P. Carbery, I. Breen, and D. B. Turner, “Ultrabroadband two-quantum two-dimensional electronic spectroscopy,” J. Chem. Phys. 145(6), 064201 (2016).
    [Crossref]
  17. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
    [Crossref] [PubMed]
  18. E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36(9), 1665–1667 (2011).
    [Crossref] [PubMed]
  19. H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
    [Crossref] [PubMed]
  20. A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
    [Crossref] [PubMed]
  21. B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
    [Crossref] [PubMed]
  22. X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
    [Crossref] [PubMed]
  23. H. Seiler, S. Palato, B. E. Schmidt, and P. Kambhampati, “Simple fiber-based solution for coherent multidimensional spectroscopy in the visible regime,” Opt. Lett. 42(3), 643–646 (2017).
    [Crossref] [PubMed]
  24. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
    [Crossref] [PubMed]
  25. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21(8), 564–566 (1996).
    [Crossref] [PubMed]
  26. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
    [Crossref]
  27. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  28. R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
    [Crossref] [PubMed]
  29. M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32(6), 713–715 (2007).
    [Crossref] [PubMed]
  30. J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28(1), 171–178 (2011).
    [Crossref]
  31. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
    [Crossref] [PubMed]
  32. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
    [Crossref]
  33. A.-L. Calendron, H. Çankaya, G. Cirmi, and F. X. Kärtner, “White-light generation with sub-ps pulses,” Opt. Express 23(11), 13866–13879 (2015).
    [Crossref] [PubMed]
  34. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
    [Crossref] [PubMed]
  35. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
    [Crossref] [PubMed]
  36. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348 (1997).
    [Crossref]
  37. A. Ghosh, A. L. Serrano, T. A. Oudenhoven, J. S. Ostrander, E. C. Eklund, A. F. Blair, and M. T. Zanni, “Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector,” Opt. Lett. 41(3), 524–527 (2016).
    [Crossref] [PubMed]
  38. J. X. Tull, M. A. Dugan, and W. S. Warren, “High-resolution, ultrafast laser pulse shaping and its applications,” in Advances in Magnetic and Optical Resonance, S. W. Warren, ed. (Academic Press, 1997), pp. 1-II.
  39. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  40. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
    [Crossref]
  41. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18(11), 11015–11024 (2010).
    [Crossref] [PubMed]
  42. G. E. Box and G. M. Jenkins, “Time series analysis, control, and forecasting,” San Francisco, CA: Holden Day 3226, 10 (1976).
  43. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  44. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22(17), 1317–1319 (1997).
    [Crossref] [PubMed]
  45. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  46. N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
    [Crossref]
  47. R. Moca, S. R. Meech, and I. A. Heisler, “Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution,” J. Phys. Chem. B 119(27), 8623–8630 (2015).
    [Crossref] [PubMed]
  48. K. L. Wells, Z. Zhang, J. R. Rouxel, and H.-S. Tan, “Measuring the Spectral Diffusion of Chlorophyll a Using Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B 117(8), 2294–2299 (2013).
    [Crossref] [PubMed]
  49. F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31(19), 2918–2920 (2006).
    [Crossref] [PubMed]
  50. E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
    [Crossref] [PubMed]
  51. H. Staleva and G. V. Hartland, “Transient Absorption Studies of Single Silver Nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
    [Crossref]
  52. C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
    [Crossref]
  53. T. Zhu, Y. Wan, Z. Guo, J. Johnson, and L. Huang, “Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length,” Adv. Mater. 28(34), 7539–7547 (2016).
    [Crossref] [PubMed]
  54. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
    [Crossref] [PubMed]
  55. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref] [PubMed]

2017 (1)

2016 (5)

2015 (8)

R. Moca, S. R. Meech, and I. A. Heisler, “Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution,” J. Phys. Chem. B 119(27), 8623–8630 (2015).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
[Crossref] [PubMed]

A.-L. Calendron, H. Çankaya, G. Cirmi, and F. X. Kärtner, “White-light generation with sub-ps pulses,” Opt. Express 23(11), 13866–13879 (2015).
[Crossref] [PubMed]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

2014 (5)

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

J. Dostál, F. Vácha, J. Pšenčík, and D. Zigmantas, “2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome,” J. Phys. Chem. Lett. 5(10), 1743–1747 (2014).
[Crossref] [PubMed]

2013 (5)

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340(6128), 52–56 (2013).
[Crossref] [PubMed]

K. L. Wells, Z. Zhang, J. R. Rouxel, and H.-S. Tan, “Measuring the Spectral Diffusion of Chlorophyll a Using Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B 117(8), 2294–2299 (2013).
[Crossref] [PubMed]

E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
[Crossref] [PubMed]

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

2012 (3)

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
[Crossref] [PubMed]

J. R. Caram, A. F. Fidler, and G. S. Engel, “Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy,” J. Chem. Phys. 137(2), 024507 (2012).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

2011 (5)

J. Helbing and P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28(1), 171–178 (2011).
[Crossref]

E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36(9), 1665–1667 (2011).
[Crossref] [PubMed]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

2010 (1)

2009 (5)

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
[Crossref] [PubMed]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular Aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

2008 (1)

H. Staleva and G. V. Hartland, “Transient Absorption Studies of Single Silver Nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

2007 (4)

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32(6), 713–715 (2007).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1998 (1)

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

1997 (3)

1996 (1)

1986 (1)

Abramavicius, D.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Ahn, T. K.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Al Haddad, A.

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Arnold, M. S.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Arrell, C.

Auböck, G.

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Bizimana, L. A.

T. A. Gellen, L. A. Bizimana, W. P. Carbery, I. Breen, and D. B. Turner, “Ultrabroadband two-quantum two-dimensional electronic spectroscopy,” J. Chem. Phys. 145(6), 064201 (2016).
[Crossref]

Blair, A. F.

Blankenship, R. E.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Borrego-Varillas, R.

Bradler, M.

E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
[Crossref] [PubMed]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Breen, I.

T. A. Gellen, L. A. Bizimana, W. P. Carbery, I. Breen, and D. B. Turner, “Ultrabroadband two-quantum two-dimensional electronic spectroscopy,” J. Chem. Phys. 145(6), 064201 (2016).
[Crossref]

Brida, D.

Brixner, T.

Buchvarov, I.

Butkus, V.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Calendron, A.-L.

Calhoun, T. R.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Çankaya, H.

Caram, J. R.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

J. R. Caram, A. F. Fidler, and G. S. Engel, “Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy,” J. Chem. Phys. 137(2), 024507 (2012).
[Crossref] [PubMed]

Carbery, W. P.

T. A. Gellen, L. A. Bizimana, W. P. Carbery, I. Breen, and D. B. Turner, “Ultrabroadband two-quantum two-dimensional electronic spectroscopy,” J. Chem. Phys. 145(6), 064201 (2016).
[Crossref]

Caycedo-Soler, F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Cerullo, G.

Chauvet, A.

Cheng, Y. C.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Cheng, Y.-C.

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular Aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Chergui, M.

Cirmi, G.

Cogdell, R. J.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340(6128), 52–56 (2013).
[Crossref] [PubMed]

Cotts, B. L.

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

Cundiff, S. T.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Dahlberg, P. D.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

DeFlores, L. P.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Ding, F.

Dolzhnikov, D. S.

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

Dostál, J.

X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression,” Opt. Express 24(18), 20781–20791 (2016).
[Crossref] [PubMed]

J. Dostál, F. Vácha, J. Pšenčík, and D. Zigmantas, “2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome,” J. Phys. Chem. Lett. 5(10), 1743–1747 (2014).
[Crossref] [PubMed]

Dugan, M. A.

Eck, R.

Eklund, E. C.

Engel, G. S.

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

J. R. Caram, A. F. Fidler, and G. S. Engel, “Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy,” J. Chem. Phys. 137(2), 024507 (2012).
[Crossref] [PubMed]

E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36(9), 1665–1667 (2011).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Fidler, A. F.

J. R. Caram, A. F. Fidler, and G. S. Engel, “Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy,” J. Chem. Phys. 137(2), 024507 (2012).
[Crossref] [PubMed]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Fleming, G. R.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
[Crossref] [PubMed]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular Aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18(11), 11015–11024 (2010).
[Crossref] [PubMed]

Gallagher Faeder, S. M.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Ganzer, L.

Garab, G.

Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
[Crossref] [PubMed]

Gellen, T. A.

T. A. Gellen, L. A. Bizimana, W. P. Carbery, I. Breen, and D. B. Turner, “Ultrabroadband two-quantum two-dimensional electronic spectroscopy,” J. Chem. Phys. 145(6), 064201 (2016).
[Crossref]

Gelzinis, A.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Ghosh, A.

Ginsberg, N. S.

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular Aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Graham, M. W.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
[Crossref] [PubMed]

Grechko, M.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Green, A. A.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
[Crossref] [PubMed]

Griffin, G. B.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Guo, Z.

T. Zhu, Y. Wan, Z. Guo, J. Johnson, and L. Huang, “Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length,” Adv. Mater. 28(34), 7539–7547 (2016).
[Crossref] [PubMed]

Hamm, P.

Harel, E.

Hartland, G. V.

H. Staleva and G. V. Hartland, “Transient Absorption Studies of Single Silver Nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

Hauer, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Heisler, I. A.

R. Moca, S. R. Meech, and I. A. Heisler, “Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution,” J. Phys. Chem. B 119(27), 8623–8630 (2015).
[Crossref] [PubMed]

Helbing, J.

Hersam, M. C.

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
[Crossref] [PubMed]

Huang, L.

T. Zhu, Y. Wan, Z. Guo, J. Johnson, and L. Huang, “Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length,” Adv. Mater. 28(34), 7539–7547 (2016).
[Crossref] [PubMed]

Huber, G.

Huelga, S. F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Joffre, M.

Johnson, J.

T. Zhu, Y. Wan, Z. Guo, J. Johnson, and L. Huang, “Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length,” Adv. Mater. 28(34), 7539–7547 (2016).
[Crossref] [PubMed]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Kambhampati, P.

Kanal, F.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Kärtner, F. X.

Keiber, S.

Khadivi, A.

Koh, C. J.

Krebs, N.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Kubarych, K. J.

Kuleshov, N. V.

Lagatsky, A. A.

Lambrev, P. H.

Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
[Crossref] [PubMed]

Lepetit, L.

Lewis, K. L. M.

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Lim, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lincoln, C. N.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Long, P. D.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Ma, X.

Mancal, T.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Manzoni, C.

Matthews, T. E.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

McCanne, R.

McDonough, T. J.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Meech, S. R.

R. Moca, S. R. Meech, and I. A. Heisler, “Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution,” J. Phys. Chem. B 119(27), 8623–8630 (2015).
[Crossref] [PubMed]

Mehlenbacher, R. D.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Mikhailov, V. P.

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Moca, R.

R. Moca, S. R. Meech, and I. A. Heisler, “Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution,” J. Phys. Chem. B 119(27), 8623–8630 (2015).
[Crossref] [PubMed]

Moulton, P. F.

Mukherjee, P.

Mulvaney, R. M.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340(6128), 52–56 (2013).
[Crossref] [PubMed]

Myers, J. A.

Nee, M. J.

Nelson, K. A.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Nicodemus, R. A.

Noriega, R.

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

Ogilvie, J. P.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18(11), 11015–11024 (2010).
[Crossref] [PubMed]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
[Crossref] [PubMed]

Ojeda, J.

Oriana, A.

Ostrander, J. S.

Ostroumov, E. E.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340(6128), 52–56 (2013).
[Crossref] [PubMed]

Oudenhoven, T. A.

Palato, S.

Palecek, D.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Pan, J.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Penwell, S. B.

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

Piletic, I. R.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Plenio, M. B.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Podlipensky, A. V.

Prior, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Pšencík, J.

J. Dostál, F. Vácha, J. Pšenčík, and D. Zigmantas, “2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome,” J. Phys. Chem. Lett. 5(10), 1743–1747 (2014).
[Crossref] [PubMed]

Pugliesi, I.

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
[Crossref] [PubMed]

Read, E. L.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Riedle, E.

E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
[Crossref] [PubMed]

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Rolczynski, B. S.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

Rouxel, J. R.

K. L. Wells, Z. Zhang, J. R. Rouxel, and H.-S. Tan, “Measuring the Spectral Diffusion of Chlorophyll a Using Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B 117(8), 2294–2299 (2013).
[Crossref] [PubMed]

Sailer, C. F.

E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
[Crossref] [PubMed]

Schmidt, B. E.

Scholes, G. D.

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340(6128), 52–56 (2013).
[Crossref] [PubMed]

Seiler, H.

Selim, M. A.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Senlik, S. S.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Serrano, A. L.

Shim, S. H.

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Simpson, M. J.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Spokoyny, B.

Staleva, H.

H. Staleva and G. V. Hartland, “Transient Absorption Studies of Single Silver Nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Talapin, D. V.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

Tan, H. S.

Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
[Crossref] [PubMed]

Tan, H.-S.

K. L. Wells, Z. Zhang, J. R. Rouxel, and H.-S. Tan, “Measuring the Spectral Diffusion of Chlorophyll a Using Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B 117(8), 2294–2299 (2013).
[Crossref] [PubMed]

Tekavec, P. F.

Tokmakoff, A.

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Trifonov, A.

Tull, J. X.

Turner, D. B.

T. A. Gellen, L. A. Bizimana, W. P. Carbery, I. Breen, and D. B. Turner, “Ultrabroadband two-quantum two-dimensional electronic spectroscopy,” J. Chem. Phys. 145(6), 064201 (2016).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Vácha, F.

J. Dostál, F. Vácha, J. Pšenčík, and D. Zigmantas, “2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome,” J. Phys. Chem. Lett. 5(10), 1743–1747 (2014).
[Crossref] [PubMed]

Valkunas, L.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

van Mourik, F.

Viswanathan, S.

von Berlepsch, H.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Wan, Y.

T. Zhu, Y. Wan, Z. Guo, J. Johnson, and L. Huang, “Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length,” Adv. Mater. 28(34), 7539–7547 (2016).
[Crossref] [PubMed]

Warren, W. S.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348 (1997).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Wells, K. L.

Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
[Crossref] [PubMed]

K. L. Wells, Z. Zhang, J. R. Rouxel, and H.-S. Tan, “Measuring the Spectral Diffusion of Chlorophyll a Using Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B 117(8), 2294–2299 (2013).
[Crossref] [PubMed]

Wenninger, M.

E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
[Crossref] [PubMed]

Wilcox, D. E.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Wong, C. Y.

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

Wu, H.

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

Wu, M. Y.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Xie, X. S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Yocum, C. F.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Zanni, M. T.

A. Ghosh, A. L. Serrano, T. A. Oudenhoven, J. S. Ostrander, E. C. Eklund, A. F. Blair, and M. T. Zanni, “Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector,” Opt. Lett. 41(3), 524–527 (2016).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31(19), 2918–2920 (2006).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
[Crossref] [PubMed]

K. L. Wells, Z. Zhang, J. R. Rouxel, and H.-S. Tan, “Measuring the Spectral Diffusion of Chlorophyll a Using Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B 117(8), 2294–2299 (2013).
[Crossref] [PubMed]

Zheng, H.

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

Zhu, T.

T. Zhu, Y. Wan, Z. Guo, J. Johnson, and L. Huang, “Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length,” Adv. Mater. 28(34), 7539–7547 (2016).
[Crossref] [PubMed]

Zigmantas, D.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

J. Dostál, F. Vácha, J. Pšenčík, and D. Zigmantas, “2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome,” J. Phys. Chem. Lett. 5(10), 1743–1747 (2014).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular Aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

T. Zhu, Y. Wan, Z. Guo, J. Johnson, and L. Huang, “Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length,” Adv. Mater. 28(34), 7539–7547 (2016).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (3)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Chem. Phys. Lett. (1)

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3-4), 307–313 (1998).
[Crossref]

Faraday Discuss. (1)

E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer, and I. Pugliesi, “Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes,” Faraday Discuss. 163, 139–158 (2013).
[Crossref] [PubMed]

J. Chem. Phys. (3)

J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, “Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy,” J. Chem. Phys. 140(8), 084701 (2014).
[Crossref] [PubMed]

J. R. Caram, A. F. Fidler, and G. S. Engel, “Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy,” J. Chem. Phys. 137(2), 024507 (2012).
[Crossref] [PubMed]

T. A. Gellen, L. A. Bizimana, W. P. Carbery, I. Breen, and D. B. Turner, “Ultrabroadband two-quantum two-dimensional electronic spectroscopy,” J. Chem. Phys. 145(6), 064201 (2016).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (2)

R. Moca, S. R. Meech, and I. A. Heisler, “Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution,” J. Phys. Chem. B 119(27), 8623–8630 (2015).
[Crossref] [PubMed]

K. L. Wells, Z. Zhang, J. R. Rouxel, and H.-S. Tan, “Measuring the Spectral Diffusion of Chlorophyll a Using Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. B 117(8), 2294–2299 (2013).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

H. Staleva and G. V. Hartland, “Transient Absorption Studies of Single Silver Nanocubes,” J. Phys. Chem. C 112(20), 7535–7539 (2008).
[Crossref]

C. Y. Wong, S. B. Penwell, B. L. Cotts, R. Noriega, H. Wu, and N. S. Ginsberg, “Revealing Exciton Dynamics in a Small-Molecule Organic Semiconducting Film with Subdomain Transient Absorption Microscopy,” J. Phys. Chem. C 117(42), 22111–22122 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Dostál, F. Vácha, J. Pšenčík, and D. Zigmantas, “2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome,” J. Phys. Chem. Lett. 5(10), 1743–1747 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

M. W. Graham, T. R. Calhoun, A. A. Green, M. C. Hersam, and G. R. Fleming, “Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes,” Nano Lett. 12(2), 813–819 (2012).
[Crossref] [PubMed]

Nat. Chem. (1)

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[PubMed]

Nat. Commun. (3)

Z. Zhang, P. H. Lambrev, K. L. Wells, G. Garab, and H. S. Tan, “Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy,” Nat. Commun. 6, 7914 (2015).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M. Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Nature (1)

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, “Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe,” New J. Phys. 15(8), 085016 (2013).
[Crossref]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (12)

H. Seiler, S. Palato, B. E. Schmidt, and P. Kambhampati, “Simple fiber-based solution for coherent multidimensional spectroscopy in the visible regime,” Opt. Lett. 42(3), 643–646 (2017).
[Crossref] [PubMed]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21(8), 564–566 (1996).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

A. Ghosh, A. L. Serrano, T. A. Oudenhoven, J. S. Ostrander, E. C. Eklund, A. F. Blair, and M. T. Zanni, “Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector,” Opt. Lett. 41(3), 524–527 (2016).
[Crossref] [PubMed]

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped pulse upconversion,” Opt. Lett. 32(6), 713–715 (2007).
[Crossref] [PubMed]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
[Crossref] [PubMed]

E. Harel, P. D. Long, and G. S. Engel, “Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2,” Opt. Lett. 36(9), 1665–1667 (2011).
[Crossref] [PubMed]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32(20), 2966–2968 (2007).
[Crossref] [PubMed]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22(17), 1317–1319 (1997).
[Crossref] [PubMed]

F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31(19), 2918–2920 (2006).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104(36), 14197–14202 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Sci. Transl. Med. (1)

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Science (2)

E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, “Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria,” Science 340(6128), 52–56 (2013).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Other (3)

J. P. Ogilvie and K. J. Kubarych, “Chapter 5 Multidimensional Electronic and Vibrational Spectroscopy: An Ultrafast Probe of Molecular Relaxation and Reaction Dynamics,” in Advances In Atomic, Molecular, and Optical Physics (Academic Press, 2009), pp. 249–321.

J. X. Tull, M. A. Dugan, and W. S. Warren, “High-resolution, ultrafast laser pulse shaping and its applications,” in Advances in Magnetic and Optical Resonance, S. W. Warren, ed. (Academic Press, 1997), pp. 1-II.

G. E. Box and G. M. Jenkins, “Time series analysis, control, and forecasting,” San Francisco, CA: Holden Day 3226, 10 (1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diagram of experimental layout of 2D-WL spectrometer.

Fig. 2
Fig. 2

Example white light continuum generated from focusing 1040 nm laser output into an 8 mm YAG crystal. Spectral profile and wavelength range can be altered with different focusing conditions.

Fig. 3
Fig. 3

a) Pulse duration trace for the pump without compression from pulse shaper. b) Pulse duration trace after compression from the pulse shaper. c) Pump spectrum.

Fig. 4
Fig. 4

Measurement of the instrument response using white light continuum pump and probe. a) Normalized pump-probe spectra as a function of pump probe delay. b) Absolute value of the normalized pump-probe signal at different probe wavelengths as a function of waiting time. c) Pump-probe signal at 650 nm (blue circles), fit of data to Gaussian convoluted with a bi-exponential decay (solid blue), and Gaussian instrument response (black dashes).

Fig. 5
Fig. 5

a) Relative intensity of continuum at 651 nm over 221 laser shots. b) Fourier transform of 221 sequential shots at 651 nm on a log scale. c) Statistic autocorrelation computed for 1,638,400 sequential shots (plotted showing 150,000 shots)

Fig. 6
Fig. 6

Comparison of Yb (blue) and Ti:sapphire (red) based continua measured at 1 kHz. a) Relative intensity of continuum at 651 nm over 214 laser shots. b) Fourier transform of 16,384 sequential shots at 651 nm on a log scale. c) Statistic autocorrelation computed for 214 sequential shots (plotted showing 1,500 shots, inset zoomed in showing 200 shots).

Fig. 7
Fig. 7

Different data collection schemes of 2D spectra. (left) Scheme 1: relative pump phase, φ12, and time delay, t1, are incremented with every laser shot, and the entire pulse sequence is repeated n times. (center) Scheme 2: The pump pulses are blocked every other shot and t1 is fixed for 2n laser shots before moving to the next t1. (right) Scheme 3: relative pump phase, φ12, and time delay, t1, are fixed for n laser shots before moving to the next φ12 and t1 combination. White represents φ12 = 0, grey is φ12 = π, and black indicates no pump pulse.

Fig. 8
Fig. 8

Top: 2D spectra of a CNT film using Scheme 1 (a), Scheme 2 (b), and Scheme 3 (c). Bottom: normalized time domain signals at 651 nm for Scheme 1 (a), Scheme 2 (b), and Scheme 3 (c). Regions in t1 where the noise is calculated are shown in black boxes.

Fig. 9
Fig. 9

Top: 2D spectra of CNT film at different laser repetition rates. 100 kHz with 10 sec acquisition time (a), 1 kHz with 10 sec acquisition time (b), and 1 kHz with 16.67 min acquisition time (c). Bottom: normalized time domain signals at 651 nm for (a), (b), and (c). Regions in t1 where the noise is calculated are shown in black boxes

Fig. 10
Fig. 10

Sensitivity of the 2D-WL spectrometer. (a,c,e) Linear absorption spectra of chlorophyll a in methanol. (b,d,f) 2D-WL spectra of chlorophyll a in methanol corresponding to linear spectra to the left. Calculated signal-to-noise is shown in the inset of each 2D spectrum. Signal-to-noise was calculated from the free induction decay at the probe pixel corresponding to 665 nm using a t1 > 118 fs cutoff.

Fig. 11
Fig. 11

Laser intensity correlation corresponding to the amount of experimental data collection time required to collect a single free induction decay consisting of 100 data points, drawn with horizontal bars. Intensity correlation data take from Figs. 5(c) and 6(c). (a) Comparison of time required for a Yb laser running at a repetition rate of 100 and 1 kHz. (b) Comparison of time required for a Yb and Ti:sapphire laser, each running at 1 kHz. Notice, only the 100 kHz Yb laser is able to measure the free induction decay before a drop in the correlation occurs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M(ω)1+exp[iωτ]
r k = C k C 0
C k = 1 N i=1 Nk ( I i I ¯ )( I i+k I ¯ )
S= log 10 ( I φ 12 =π I φ 12 =0 )
S= log 10 ( I off I on )

Metrics