Abstract

A multichannel imaging system is presented, consisting of 25 microfabricated optically-pumped magnetometers. The sensor probes have a footprint of less than 1 cm2 and a sensitive volume of 1.5 mm × 1.5 mm × 1.5 mm and connect to a control unit through optical fibers of length 5 m. Operating at very low ambient magnetic fields, the sensor array has an average magnetic sensitivity of 24 fT/Hz1/2, with a standard deviation of 5 fT/Hz1/2 when the noise of each sensor is averaged between 10 and 50 Hz. Operating in Earth’s magnetic field, the magnetometers have a field sensitivity around 5 pT/Hz1/2. The vacuum-packaged sensor heads are optically heated and consume on average 76 ± 7 mW of power each. The heating power is provided by an array of eight diode lasers. Magnetic field imaging of small probe coils was obtained with the sensor array and fits to the expected field pattern agree well with the measured data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Four-channel optically pumped atomic magnetometer for magnetoencephalography

Anthony P. Colombo, Tony R. Carter, Amir Borna, Yuan-Yu Jau, Cort N. Johnson, Amber L. Dagel, and Peter D. D. Schwindt
Opt. Express 24(14) 15403-15416 (2016)

Pulsed operation of a miniature scalar optically pumped magnetometer

Vladislav Gerginov, Sean Krzyzewski, and Svenja Knappe
J. Opt. Soc. Am. B 34(7) 1429-1434 (2017)

Magnetoencephalography with a chip-scale atomic magnetometer

T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe
Biomed. Opt. Express 3(5) 981-990 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
    [PubMed]
  2. W. F. Stuart, “Earth’s field magnetometry,” Rep. Prog. Phys. 35(2), 803–881 (1972).
    [Crossref]
  3. E. Friis-Christensen, H. Lühr, and G. Hulot, “Swarm: A constellation to study the Earth’s magnetic field,” Earth Planets Space 58(4), 351–358 (2006).
    [Crossref]
  4. M. Acuña, “Fluxgate magnetometers for outer planets exploration,” IEEE Trans. Magn. 10(3), 519–523 (1974).
    [Crossref]
  5. E. M. R. Forum, “Magnetic Resonance, a critical peer-reviewed introduction” (2014), retrieved http://www.magnetic-resonance.org/ .
  6. S. Supek and C. Aine, eds., Magnetoencephalography - From Signals to Dynamic Cortical Networks (Springer-Verlag Berlin Heidelberg, 2014), p. 1013.
  7. J. B. Clarke, A. I., ed., The SQUID Handbook (Wiley-VCH, Weinheim, 2006), Vol. 2.
  8. M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
    [Crossref] [PubMed]
  9. O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
    [Crossref] [PubMed]
  10. Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer,” IEEE Trans. Magn. 50, 1–3 (2014).
  11. B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
    [Crossref]
  12. R. Mhaskar, S. Knappe, and J. Kitching, “A low-power, high-sensitivity micromachined optical magnetometer,” Appl. Phys. Lett. 101(24), 241105 (2012).
    [Crossref]
  13. L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
    [Crossref]
  14. M. J. Mescher, R. Lutwak, and M. Varghese, “An ultra-low-power physics package for a chip-scale atomic clock,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05., 2005, pp. 311–316 Vol. 1.
    [Crossref]
  15. G. Wallis and D. Pomerantz, “Field Assisted Glass-Metal Sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
    [Crossref]
  16. J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
    [Crossref]
  17. W. Happer and H. Tang, “Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
    [Crossref]
  18. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
    [Crossref]
  19. V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
    [Crossref]
  20. C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
    [Crossref]
  21. S.-K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
    [Crossref]
  22. M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
    [Crossref]
  23. H. J. Lee, J. H. Shim, H. S. Moon, and K. Kim, “Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback,” Opt. Express 22(17), 19887–19894 (2014).
    [Crossref] [PubMed]
  24. S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
    [Crossref]
  25. H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
    [Crossref]
  26. W. E. Bell and A. L. Bloom, “Optically Driven Spin Precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
    [Crossref]
  27. J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum, Besancon,2009, pp. 1180–1182.
  28. E. B. Alexandrov and A. K. Vershovskii, “Mx and Mz Magnetometers,” in Optical Magnetometry, D. Budker and D. F. J. Kimball, eds. (Cambridge University Press, Cambridge, 2013), pp. 60–84.
  29. “Eagle Technology,” (Kanazawa, Japan).
  30. M. Fuchs, H. A. Wischmann, M. Wagner, and J. Krüger, “Coordinate system matching for neuromagnetic and morphological reconstruction overlay,” IEEE Trans. Biomed. Eng. 42(4), 416–420 (1995).
    [Crossref] [PubMed]
  31. R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011).
    [Crossref] [PubMed]
  32. G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
    [Crossref]
  33. H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
    [Crossref]

2015 (1)

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

2014 (2)

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer,” IEEE Trans. Magn. 50, 1–3 (2014).

H. J. Lee, J. H. Shim, H. S. Moon, and K. Kim, “Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback,” Opt. Express 22(17), 19887–19894 (2014).
[Crossref] [PubMed]

2013 (2)

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

2012 (3)

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

R. Mhaskar, S. Knappe, and J. Kitching, “A low-power, high-sensitivity micromachined optical magnetometer,” Appl. Phys. Lett. 101(24), 241105 (2012).
[Crossref]

H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
[Crossref]

2011 (1)

R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011).
[Crossref] [PubMed]

2010 (2)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

2009 (2)

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

2008 (1)

S.-K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[Crossref]

2006 (2)

E. Friis-Christensen, H. Lühr, and G. Hulot, “Swarm: A constellation to study the Earth’s magnetic field,” Earth Planets Space 58(4), 351–358 (2006).
[Crossref]

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

2004 (3)

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

1995 (1)

M. Fuchs, H. A. Wischmann, M. Wagner, and J. Krüger, “Coordinate system matching for neuromagnetic and morphological reconstruction overlay,” IEEE Trans. Biomed. Eng. 42(4), 416–420 (1995).
[Crossref] [PubMed]

1974 (1)

M. Acuña, “Fluxgate magnetometers for outer planets exploration,” IEEE Trans. Magn. 10(3), 519–523 (1974).
[Crossref]

1973 (1)

W. Happer and H. Tang, “Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

1972 (1)

W. F. Stuart, “Earth’s field magnetometry,” Rep. Prog. Phys. 35(2), 803–881 (1972).
[Crossref]

1969 (2)

G. Wallis and D. Pomerantz, “Field Assisted Glass-Metal Sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[Crossref]

1961 (1)

W. E. Bell and A. L. Bloom, “Optically Driven Spin Precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

Acuña, M.

M. Acuña, “Fluxgate magnetometers for outer planets exploration,” IEEE Trans. Magn. 10(3), 519–523 (1974).
[Crossref]

Alem, O.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

Arai, K.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Baranga, A. B.-A.

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Bell, W. E.

W. E. Bell and A. L. Bloom, “Optically Driven Spin Precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

Bison, G.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Bloom, A. L.

W. E. Bell and A. L. Bloom, “Optically Driven Spin Precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

Budker, D.

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

Burghoff, M.

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

Castagna, N.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Cohen-Tannoudji, C.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[Crossref]

Corsini, E.

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

Curio, G.

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

DeVience, S. J.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Dong, H.

H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
[Crossref]

Drung, D.

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

Dupont-Roc, J.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[Crossref]

Eswaran, H.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

Fang, J. C.

H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
[Crossref]

Fries, P.

R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011).
[Crossref] [PubMed]

Friis-Christensen, E.

E. Friis-Christensen, H. Lühr, and G. Hulot, “Swarm: A constellation to study the Earth’s magnetic field,” Earth Planets Space 58(4), 351–358 (2006).
[Crossref]

Fuchs, M.

M. Fuchs, H. A. Wischmann, M. Wagner, and J. Krüger, “Coordinate system matching for neuromagnetic and morphological reconstruction overlay,” IEEE Trans. Biomed. Eng. 42(4), 416–420 (1995).
[Crossref] [PubMed]

Gawlik, W.

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

Glenn, D. R.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Happer, W.

W. Happer and H. Tang, “Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

Haroche, S.

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[Crossref]

Higbie, J. M.

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

Hofer, A.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Hoffman, D.

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Hollberg, L.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

Hovde, D. C.

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

Hulot, G.

E. Friis-Christensen, H. Lühr, and G. Hulot, “Swarm: A constellation to study the Earth’s magnetic field,” Earth Planets Space 58(4), 351–358 (2006).
[Crossref]

Ito, Y.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer,” IEEE Trans. Magn. 50, 1–3 (2014).

Johnson, C.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Kamada, K.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer,” IEEE Trans. Magn. 50, 1–3 (2014).

Kasprzak, M.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Kim, K.

Kimball, D. F. J.

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

Kitching, J.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

R. Mhaskar, S. Knappe, and J. Kitching, “A low-power, high-sensitivity micromachined optical magnetometer,” Appl. Phys. Lett. 101(24), 241105 (2012).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

Knappe, S.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

R. Mhaskar, S. Knappe, and J. Kitching, “A low-power, high-sensitivity micromachined optical magnetometer,” Appl. Phys. Lett. 101(24), 241105 (2012).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

Knowles, P.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Kobayashi, T.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer,” IEEE Trans. Magn. 50, 1–3 (2014).

Komeili, A.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Krüger, J.

M. Fuchs, H. A. Wischmann, M. Wagner, and J. Krüger, “Coordinate system matching for neuromagnetic and morphological reconstruction overlay,” IEEE Trans. Biomed. Eng. 42(4), 416–420 (1995).
[Crossref] [PubMed]

Le Sage, D.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

LeBlanc, J.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

Ledbetter, M. P.

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

Lee, H. J.

Lee, S.-K.

S.-K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[Crossref]

Liew, L. A.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

Lühr, H.

E. Friis-Christensen, H. Lühr, and G. Hulot, “Swarm: A constellation to study the Earth’s magnetic field,” Earth Planets Space 58(4), 351–358 (2006).
[Crossref]

Lukin, M. D.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Mackert, B.-M.

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Maris, E.

R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011).
[Crossref] [PubMed]

Mhaskar, R.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

R. Mhaskar, S. Knappe, and J. Kitching, “A low-power, high-sensitivity micromachined optical magnetometer,” Appl. Phys. Lett. 101(24), 241105 (2012).
[Crossref]

Moon, H. S.

Moreland, J.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

Okada, Y.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

Oostenveld, R.

R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011).
[Crossref] [PubMed]

Patton, B.

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

Pham, L. M.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Pomerantz, D.

G. Wallis and D. Pomerantz, “Field Assisted Glass-Metal Sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

Pospelov, M.

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

Pustelny, S.

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

Qin, J.

H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
[Crossref]

Rahn-Lee, L.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Robinson, H.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

Romalis, M. V.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

S.-K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[Crossref]

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

Sander, T. H.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

Sato, D.

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer,” IEEE Trans. Magn. 50, 1–3 (2014).

Saudan, H.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Schenker, J. L.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Schnabel, A.

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

Schoffelen, J.-M.

R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011).
[Crossref] [PubMed]

Schwindt, P. D. D.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Seltzer, S. J.

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

Shah, V.

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

Shim, J. H.

Steinhoff, U.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

Stuart, W. F.

W. F. Stuart, “Earth’s field magnetometry,” Rep. Prog. Phys. 35(2), 803–881 (1972).
[Crossref]

Tang, H.

W. Happer and H. Tang, “Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

Tang, X. B.

H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
[Crossref]

Trahms, L.

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

Versolato, O. O.

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

Wagner, M.

M. Fuchs, H. A. Wischmann, M. Wagner, and J. Krüger, “Coordinate system matching for neuromagnetic and morphological reconstruction overlay,” IEEE Trans. Biomed. Eng. 42(4), 416–420 (1995).
[Crossref] [PubMed]

Wallis, G.

G. Wallis and D. Pomerantz, “Field Assisted Glass-Metal Sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

Walsworth, R. L.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Weis, A.

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

Weisend, M.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Wischmann, H. A.

M. Fuchs, H. A. Wischmann, M. Wagner, and J. Krüger, “Coordinate system matching for neuromagnetic and morphological reconstruction overlay,” IEEE Trans. Biomed. Eng. 42(4), 416–420 (1995).
[Crossref] [PubMed]

Xia, H.

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Yacoby, A.

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Zhou, B. Q.

H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
[Crossref]

Appl. Phys. Lett. (9)

B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett. 101(8), 083502 (2012).
[Crossref]

R. Mhaskar, S. Knappe, and J. Kitching, “A low-power, high-sensitivity micromachined optical magnetometer,” Appl. Phys. Lett. 101(24), 241105 (2012).
[Crossref]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett. 84(14), 2694–2696 (2004).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

M. Burghoff, T. H. Sander, A. Schnabel, D. Drung, L. Trahms, G. Curio, and B.-M. Mackert, “dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room,” Appl. Phys. Lett. 85(25), 6278–6280 (2004).
[Crossref]

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

G. Bison, N. Castagna, A. Hofer, P. Knowles, J. L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, “A room temperature 19-channel magnetic field mapping device for cardiac signals,” Appl. Phys. Lett. 95(17), 173701 (2009).
[Crossref]

H. Xia, A. B.-A. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89(21), 211104 (2006).
[Crossref]

Comput. Intell. Neurosci. (1)

R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011).
[Crossref] [PubMed]

Earth Planets Space (1)

E. Friis-Christensen, H. Lühr, and G. Hulot, “Swarm: A constellation to study the Earth’s magnetic field,” Earth Planets Space 58(4), 351–358 (2006).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

H. Dong, J. C. Fang, B. Q. Zhou, X. B. Tang, and J. Qin, “Three-dimensional atomic magnetometry,” Eur. Phys. J. Appl. Phys. 57(2), 21004 (2012).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. Fuchs, H. A. Wischmann, M. Wagner, and J. Krüger, “Coordinate system matching for neuromagnetic and morphological reconstruction overlay,” IEEE Trans. Biomed. Eng. 42(4), 416–420 (1995).
[Crossref] [PubMed]

IEEE Trans. Magn. (2)

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer,” IEEE Trans. Magn. 50, 1–3 (2014).

M. Acuña, “Fluxgate magnetometers for outer planets exploration,” IEEE Trans. Magn. 10(3), 519–523 (1974).
[Crossref]

J. Appl. Phys. (2)

G. Wallis and D. Pomerantz, “Field Assisted Glass-Metal Sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969).
[Crossref]

S.-K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008).
[Crossref]

Nature (1)

D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, “Optical magnetic imaging of living cells,” Nature 496(7446), 486–489 (2013).
[PubMed]

Opt. Express (1)

Phys. Lett. A (1)

J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969).
[Crossref]

Phys. Med. Biol. (1)

O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe, “Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers,” Phys. Med. Biol. 60(12), 4797–4811 (2015).
[Crossref] [PubMed]

Phys. Rev. A (1)

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

Phys. Rev. Lett. (3)

W. Happer and H. Tang, “Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973).
[Crossref]

M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, “Detecting domain walls of axionlike models using terrestrial experiments,” Phys. Rev. Lett. 110(2), 021803 (2013).
[Crossref] [PubMed]

W. E. Bell and A. L. Bloom, “Optically Driven Spin Precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[Crossref]

Rep. Prog. Phys. (1)

W. F. Stuart, “Earth’s field magnetometry,” Rep. Prog. Phys. 35(2), 803–881 (1972).
[Crossref]

Other (7)

E. M. R. Forum, “Magnetic Resonance, a critical peer-reviewed introduction” (2014), retrieved http://www.magnetic-resonance.org/ .

S. Supek and C. Aine, eds., Magnetoencephalography - From Signals to Dynamic Cortical Networks (Springer-Verlag Berlin Heidelberg, 2014), p. 1013.

J. B. Clarke, A. I., ed., The SQUID Handbook (Wiley-VCH, Weinheim, 2006), Vol. 2.

M. J. Mescher, R. Lutwak, and M. Varghese, “An ultra-low-power physics package for a chip-scale atomic clock,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05., 2005, pp. 311–316 Vol. 1.
[Crossref]

J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A microfabricated photonic magnetometer,” 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum, Besancon,2009, pp. 1180–1182.

E. B. Alexandrov and A. K. Vershovskii, “Mx and Mz Magnetometers,” in Optical Magnetometry, D. Budker and D. F. J. Kimball, eds. (Cambridge University Press, Cambridge, 2013), pp. 60–84.

“Eagle Technology,” (Kanazawa, Japan).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the magnetic imaging system.
Fig. 2
Fig. 2 Histogram of the power consumption of 33 sensors. The mean heating power is 80 mW with a standard deviation of 13 mW. Sensors with heating power above 90 mW were excluded from the final array, resulting in a mean power consumption of 76 ± 7 mW for the system.
Fig. 3
Fig. 3 (a) Photograph of a vacuum package. (b) Schematic of the sensor head. The optical fibers can be seen on the right side and the photodiode on top. (c) Photograph of a sensor head. The blue arrow indicates the direction of the modulation field and the detection axis of the magnetometer.
Fig. 4
Fig. 4 Noise equivalent magnetic field of 16 sensors (from Ref [9].) as a function of frequency in the zero-field mode (black) and of one sensor in the total-field mode (blue). The left inset shows the light transmission (black), dispersive Lock-In signal (blue), and quadrature Lock-in output (magenta) as a function of magnetic field. The right inset shows the statistics of the 31 sensor sensitivities when averaged between 10 Hz and 50 Hz.
Fig. 5
Fig. 5 (a) Photograph of the sensor array suspended on a rigid holder inside a magnetically shielded room. Optical fibers and electrical wires of each sensor are bundle and passed through the magnetically shielded room where they connect to the lasers and electronics. (b) Photograph of the fiberglass sphere holding five small probe coils. Only two of the five probe coils, C1 and C2, were used in the analysis. (c) Sketch showing the relative geometry of the sensors in relation to the two probe coils. Sensors are shown as green stars and the red stars indicate the probe coil positions obtained from the fit with the magnetic dipole model described below.
Fig. 6
Fig. 6 Averaged signal of coil C1 recorded by the array as a function of time. The figures on the left correspond to the side with the higher channel density, which is the right side in the frontal view photographs in Figs. 5a and 5b. Maximum amplitude of the signals is ~2.5 nT and coil C1 is located close to four channels on the left side of the array. This agrees with the placement shown in Fig. 5b.
Fig. 7
Fig. 7 Magnetic field maps of the two probe coils measured with 21 of our 25-channel imaging array (left) and calculated field map obtained from a fit with the magnetic dipole model (right). The color bar indicates field strength.

Metrics