Abstract

A strain force sensor based on fiber inline Fabry-Perot (FP) micro-cavity plugged by cantilever taper was proposed. The structure was fabricated by simple and cost-effective method only including fiber cleaving, tapering and splicing. The active-length of the FP micro-cavity reached 1360 µm, while the interference length was only 3.5 µm. Owing to the ultra-long active-length and ultra-short interference length, the strain force sensitivity of the fiber inline FP micro-cavity plugged by cantilever taper reached as high as 841.59 nm/N. Besides, the proposed structure showed good linearity (99.9%) in the sensing process and small temperature crosstalk (11 pm/ ̊C). It can be used as a practical and reliable strain force sensor.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature

Ai Zhou, Boyang Qin, Zheng Zhu, Yaxun Zhang, Zhihai Liu, Jun Yang, and Libo Yuan
Opt. Lett. 39(18) 5267-5270 (2014)

Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement

De-Wen Duan, Yun-jiang Rao, Yu-Song Hou, and Tao Zhu
Appl. Opt. 51(8) 1033-1036 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Du and Z. He, “Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification,” Opt. Express 21(22), 27111–27118 (2013).
    [Crossref] [PubMed]
  2. W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
    [Crossref]
  3. Y. H. Zhang and W. Y. Yang, “Simultaneous precision measurement of high temperature and large strain based on twisted FBG considering nonlinearity and uncertainty,” Sensor. Actuat A-Phys 239, 185–195 (2016).
  4. P. Wang, L. L. Xian, and H. P. Li, “Fabrication of Phase-Shifted Long-Period Fiber Grating and Its Application to Strain Measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
    [Crossref]
  5. W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
    [Crossref]
  6. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
    [Crossref] [PubMed]
  7. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
    [Crossref]
  8. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  9. T. Han, Y. G. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
    [Crossref] [PubMed]
  10. Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer,” Appl. Opt. 55(23), 6341–6345 (2016).
    [Crossref] [PubMed]
  11. G. K. B. Costa, P. M. P. Gouvêa, L. M. B. Soares, J. M. B. Pereira, F. Favero, A. M. B. Braga, P. Palffy-Muhoray, A. C. Bruno, and I. C. S. Carvalho, “In-fiber Fabry-Perot interferometer for strain and magnetic field sensing,” Opt. Express 24(13), 14690–14696 (2016).
    [Crossref] [PubMed]
  12. Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
    [Crossref] [PubMed]
  13. J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
    [Crossref] [PubMed]
  14. H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
    [Crossref]
  15. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  16. Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
    [Crossref]
  17. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  18. C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).
  19. J. Zhang, G. D. Peng, L. Yuan, and W. Sun, “Composite-cavity-based Fabry-Perot interferometric strain sensors,” Opt. Lett. 32(13), 1833–1835 (2007).
    [Crossref] [PubMed]
  20. J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Compos. 30(9), 1265–1274 (2009).
    [Crossref]
  21. S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
    [Crossref] [PubMed]

2016 (3)

2015 (3)

P. Wang, L. L. Xian, and H. P. Li, “Fabrication of Phase-Shifted Long-Period Fiber Grating and Its Application to Strain Measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

2014 (6)

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
[Crossref]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (5)

2011 (1)

2009 (1)

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Compos. 30(9), 1265–1274 (2009).
[Crossref]

2007 (1)

Araujo, L.

Araújo, F. M.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Bierlich, J.

Bouwmans, G.

Braga, A. M. B.

Bruno, A. C.

Cao, Z. G.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Carvalho, I. C. S.

Costa, G. K. B.

Donlagic, D.

Du, J.

Duan, D. W.

Etches, J. A.

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Compos. 30(9), 1265–1274 (2009).
[Crossref]

Favero, F.

Favero, F. C.

Fernando, G. F.

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Compos. 30(9), 1265–1274 (2009).
[Crossref]

Ferreira, M. S.

Finazzi, V.

Frazão, O.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

Geng, S. X.

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Geng, T.

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Gouvêa, P. M. P.

Han, T.

He, Z.

Hou, Y. S.

Hu, M. L.

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Huang, W. Z.

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
[Crossref]

Jian, S.

Jiang, Y.

Jorge, P. A. S.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Kang, Z.

Kobelke, J.

Li, C.

Li, D.

Li, F.

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
[Crossref]

Li, H. P.

P. Wang, L. L. Xian, and H. P. Li, “Fabrication of Phase-Shifted Long-Period Fiber Grating and Its Application to Strain Measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

Li, S.

Li, Z.

Liao, C.

Liu, S.

Liu, Y.

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Liu, Y. G.

Liu, Z. J.

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Lu, L.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Palffy-Muhoray, P.

Peng, G. D.

Pereira, J. M. B.

Pevec, S.

Pruneri, V.

Qu, S. L.

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Qu, W. G.

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Que, R. Y.

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Rao, Y. J.

Santos, J. L.

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Schuster, K.

Shui, T.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Soares, L. M. B.

Sun, B.

Sun, H.

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Sun, J.

Sun, W.

Tafulo, P. A. R.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Tang, J.

Villatoro, J.

Wang, G.

Wang, J.

Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
[Crossref] [PubMed]

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Wang, P.

P. Wang, L. L. Xian, and H. P. Li, “Fabrication of Phase-Shifted Long-Period Fiber Grating and Its Application to Strain Measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

Wang, Q.

Wang, R.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Wang, S.

Wang, Y.

Wang, Z.

Wen, X.

Wu, Z.

Xian, L. L.

P. Wang, L. L. Xian, and H. P. Li, “Fabrication of Phase-Shifted Long-Period Fiber Grating and Its Application to Strain Measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

Xu, J.

Yang, D.

Yang, J.

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Yang, K.

Yang, S.

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Yang, W. L.

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Yang, W. Y.

Y. H. Zhang and W. Y. Yang, “Simultaneous precision measurement of high temperature and large strain based on twisted FBG considering nonlinearity and uncertainty,” Sensor. Actuat A-Phys 239, 185–195 (2016).

Yang, Z. H.

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Yin, C. C.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Yin, G.

Yu, B. L.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Yuan, L.

Yuan, L. B.

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Yuan, L. T.

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Yuan, Y.

Zhang, F. S.

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
[Crossref]

Zhang, J.

Zhang, W. T.

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
[Crossref]

Zhang, X. L.

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Zhang, Y. H.

Y. H. Zhang and W. Y. Yang, “Simultaneous precision measurement of high temperature and large strain based on twisted FBG considering nonlinearity and uncertainty,” Sensor. Actuat A-Phys 239, 185–195 (2016).

Zhang, Z.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Zhao, J.

Zhen, S. L.

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

Zhen, T. K.

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
[Crossref]

Zhong, X.

Zhou, A.

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Zhou, J.

Zhu, T.

Appl. Opt. (3)

IEEE Photonics J. (1)

C. C. Yin, Z. G. Cao, Z. Zhang, T. Shui, R. Wang, J. Wang, L. Lu, S. L. Zhen, and B. L. Yu, “Temperature-Independent Ultrasensitive Fabry–Perot All-Fiber Strain Sensor Based on a Bubble-Expanded Microcavity,” IEEE Photonics J. 6(4), 6802009 (2014).

IEEE Photonics Technol. Lett. (1)

P. Wang, L. L. Xian, and H. P. Li, “Fabrication of Phase-Shifted Long-Period Fiber Grating and Its Application to Strain Measurement,” IEEE Photonics Technol. Lett. 27(5), 557–560 (2015).
[Crossref]

IEEE Sens. J. (1)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry–Pérot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

J. Lightwave Technol. (1)

W. Z. Huang, W. T. Zhang, T. K. Zhen, F. S. Zhang, and F. Li, “π-Phase-Shifted FBG for High-Resolution Static-Strain Measurement Based on Wavelet Threshold Denoising Algorithm,” J. Lightwave Technol. 32(22), 4294–4300 (2014).
[Crossref]

J. Opt. (2)

W. L. Yang, T. Geng, J. Yang, A. Zhou, Z. J. Liu, S. X. Geng, and L. B. Yuan, “A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature,” J. Opt. 17(7), 075801 (2015).
[Crossref]

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Opt. Commun. (1)

H. Sun, S. Yang, X. L. Zhang, L. T. Yuan, Z. H. Yang, and M. L. Hu, “Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer,” Opt. Commun. 340, 39–43 (2015).
[Crossref]

Opt. Express (7)

G. K. B. Costa, P. M. P. Gouvêa, L. M. B. Soares, J. M. B. Pereira, F. Favero, A. M. B. Braga, P. Palffy-Muhoray, A. C. Bruno, and I. C. S. Carvalho, “In-fiber Fabry-Perot interferometer for strain and magnetic field sensing,” Opt. Express 24(13), 14690–14696 (2016).
[Crossref] [PubMed]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[Crossref] [PubMed]

T. Han, Y. G. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
[Crossref] [PubMed]

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

J. Du and Z. He, “Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification,” Opt. Express 21(22), 27111–27118 (2013).
[Crossref] [PubMed]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Polym. Compos. (1)

J. A. Etches and G. F. Fernando, “Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation,” Polym. Compos. 30(9), 1265–1274 (2009).
[Crossref]

Sensor. Actuat A-Phys (1)

Y. H. Zhang and W. Y. Yang, “Simultaneous precision measurement of high temperature and large strain based on twisted FBG considering nonlinearity and uncertainty,” Sensor. Actuat A-Phys 239, 185–195 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The diagram of the common micro-cavity-based FPI. (b) The diagram of the FPI based on the micro-cavity plugged by cantilever taper with ultra-long active-length.
Fig. 2
Fig. 2 (a) - (d)The fabrication diagram of the fiber cantilever taper by using arc discharge fiber tapering method. (e) The picture of fabricated fiber cantilever taper.
Fig. 3
Fig. 3 (a) - (c) The fabrication diagram of the fiber inline FP micro-cavity plugged by cantilever taper by using fiber splicing method. (d) The picture of the fabricated fiber FP micro-cavity plugged by cantilever taper.
Fig. 4
Fig. 4 (a) The refection spectrum of the structure with the interference length of 138 µm and the hollow tube length of 1100 µm. (b) The refection spectrum of the structure with the interference length of 26 µm and the hollow tube length of 810 µm. (c) The refection spectrum of the structure with the interference length of 3.5 µm and the hollow tube length of 1360 µm. (d) The picture of the fabricated fiber FP micro-cavity plugged by cantilever taper with the interference length of 3.5 µm.
Fig. 5
Fig. 5 (a) - (c) The reflection spectrum changes of the structure A, B and C with different strain forces. (d) The relationship between the wavelength shift and the strain force for structure A, B and C respectively.
Fig. 6
Fig. 6 The sensor structure C after the improvement of tensile strength.
Fig. 7
Fig. 7 The relationship between the center wavelength shift of the interference peak and the temperature.

Tables (2)

Tables Icon

Table 1 Splicing parameter values.

Tables Icon

Table 2 Detailed parameter values of three structures.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ m = 4π n mc L 1 2m+1
λ m F = λ m L 1 L 1 F = 4π n mc 2m+1 L 1 F = λ m L 1 L 1 F
E= F /A L 1 / L 1
λ m F = λ m AE
λ m = 4π n mc ( L 2 L 3 ) 2m+1
λ m F = λ m L 2 L 2 F = 4π n mc 2m+1 L 2 F = λ m L 1 L 2 F
λ m F = λ m AE L 2 L 1
ε= F π( r 1 2 r 2 2 )E

Metrics