Abstract

We report generation of an ultrafast supercontinuum extending into the mid- infrared in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) pumped by 1.7 µm light from an optical parametric amplifier. The simple fiber structure offers shallow dispersion and flat transmission in the near and mid-infrared, enabling the generation of broadband spectra extending from 270 nm to 3.1 µm, with a total energy of a few µJ. In addition, we demonstrate the emission of ultraviolet dispersive waves whose frequency can be tuned simply by adjusting the pump wavelength. SR-PCF thus constitutes an effective means of compressing and delivering tunable ultrafast pulses in the near and mid-infrared spectral regions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF

Ka Fai Mak, John C. Travers, Philipp Hölzer, Nicolas Y. Joly, and Philip St. J. Russell
Opt. Express 21(9) 10942-10953 (2013)

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell
J. Opt. Soc. Am. B 28(12) A11-A26 (2011)

Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF

M. Azhar, G. K. L. Wong, W. Chang, N. Y. Joly, and P. St.J. Russell
Opt. Express 21(4) 4405-4410 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Glownia, J. Misewich, and P. P. Sorokin, “Utilization of UV and IR supercontinua in gas-phase subpicosecond kinetic spectroscopy,” in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer, New York, 2016).
  2. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
    [Crossref] [PubMed]
  3. S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express 4(5), 052501 (2011).
    [Crossref]
  4. R. Hubbard, Y. B. Ovchinnikov, J. Hayes, D. J. Richardson, Y. J. Fu, S. D. Lin, P. See, and A. G. Sinclair, “Wide spectral range confocal microscope based on endlessly single-mode fiber,” Opt. Express 18(18), 18811–18819 (2010).
    [Crossref] [PubMed]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  6. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  7. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  8. M. Mürtz and P. Hering, “Online monitoring of exhaled breath using mid-infrared laser spectroscopy,” in Mid-infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, ed. (Springer, 2008).
  9. G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
    [Crossref] [PubMed]
  10. R. Steiner, “Medical applications of mid-IR solid-state lasers,” in Mid-infrared coherent sources and applications, M. Ebrahim-Zadeh and I. T. Sorokina, ed. (Springer, 2008).
  11. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  12. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St. J. Russell, “Vacuum ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
    [Crossref]
  13. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  14. M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41(21), 5122–5125 (2016).
    [Crossref] [PubMed]
  15. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref] [PubMed]
  16. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gerome, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  17. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
    [Crossref] [PubMed]
  18. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [Crossref] [PubMed]
  19. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  20. F. Tani, J. C. Travers, and P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
    [Crossref]
  21. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
    [Crossref]
  22. H. Fattahi, H. Wang, A. Alismail, G. Arisholm, V. Pervak, A. M. Azzeer, and F. Krausz, “Near-PHz-bandwidth, phase-stable continua generated from a Yb:YAG thin-disk amplifier,” Opt. Express 24(21), 24337–24346 (2016).
    [Crossref] [PubMed]

2017 (1)

2016 (4)

2015 (3)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St. J. Russell, “Vacuum ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

2014 (3)

2013 (1)

2011 (3)

2010 (1)

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2003 (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abdolvand, A.

Ahmed, G.

Akhmediev, N.

Alismail, A.

Alsaif, B.

Amsanpally, A.

Arisholm, G.

Azzeer, A. M.

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Balciunas, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Baltuska, A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Bang, O.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Barros, H. G.

Batignani, G.

G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
[Crossref] [PubMed]

Baz, A.

Belli, F.

Benabid, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gerome, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Biriukov, A. S.

Blondy, J. M.

Brons, J.

Chafer, M.

Chang, W.

Ciappina, M.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Debord, B.

Dianov, E. M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Edavalath, N. N.

Fan, G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Fattahi, H.

Ferrante, C.

G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
[Crossref] [PubMed]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Fourcade-Dutin, C.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Frosz, M. H.

Fu, Y. J.

Fumero, G.

G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
[Crossref] [PubMed]

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Geng, X. T.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gerome, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gerome, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Ghalmi, S.

Giovannetti, G.

G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
[Crossref] [PubMed]

Gorjan, M.

Günendi, M. C.

Haefner, M.

Hasan, M. I.

Hayes, J.

Hölzer, P.

Hubbard, R.

Hugonnot, E.

Ishida, S.

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express 4(5), 052501 (2011).
[Crossref]

Itoh, K.

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express 4(5), 052501 (2011).
[Crossref]

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Joly, N. Y.

Karpowicz, N.

Kim, D.-E.

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Kosolapov, A. F.

Krausz, F.

Kubat, I.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Lin, S. D.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Major, Z.

Mak, K. F.

Maurel, M.

Ménard, J.-M.

Metzger, T.

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Nicholson, J. W.

Nishizawa, N.

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express 4(5), 052501 (2011).
[Crossref]

Nold, J.

Nubbemeyer, T.

Ohta, T.

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express 4(5), 052501 (2011).
[Crossref]

Ovchinnikov, Y. B.

Paulus, G. G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Pervak, V.

Petersen, C. R.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Plotnichenko, V. G.

Pontecorvo, E.

G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
[Crossref] [PubMed]

Prinz, S.

Pronin, O.

Pryamikov, A. D.

Ramachandran, S.

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Richardson, D. J.

Russell, P. St. J.

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref] [PubMed]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St. J. Russell, “Vacuum ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

F. Tani, J. C. Travers, and P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Schultze, M.

Schwarz, A.

Scol, F.

Scopigno, T.

G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
[Crossref] [PubMed]

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

See, P.

Semjonov, S. L.

Sinclair, A. G.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sutter, D.

Tang, Z.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tani, F.

Teisset, C. Y.

Travers, J. C.

Uebel, P.

Ueffing, M.

Vámos, L.

Vincetti, L.

Voronin, A. A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Wang, H.

Witting, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Yablon, A. D.

Yakovlev, V. S.

Zheltikov, A. M.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Zhou, B.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Phys. Express (1)

S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 µm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express 4(5), 052501 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (3)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

G. Batignani, E. Pontecorvo, G. Giovannetti, C. Ferrante, G. Fumero, and T. Scopigno, “Electronic resonances in broadband stimulated Raman spectroscopy,” Sci. Rep. 6(1), 18445 (2016).
[Crossref] [PubMed]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref] [PubMed]

Other (3)

R. Steiner, “Medical applications of mid-IR solid-state lasers,” in Mid-infrared coherent sources and applications, M. Ebrahim-Zadeh and I. T. Sorokina, ed. (Springer, 2008).

M. Mürtz and P. Hering, “Online monitoring of exhaled breath using mid-infrared laser spectroscopy,” in Mid-infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, ed. (Springer, 2008).

J. H. Glownia, J. Misewich, and P. P. Sorokin, “Utilization of UV and IR supercontinua in gas-phase subpicosecond kinetic spectroscopy,” in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer, New York, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of the transverse structure of the SR-PCF. (b) Measured (solid blue line) and simulated (dashed black line) loss of the SR-PCF. The FEM only accounts for confinement loss, i.e., the attenuation of silica (shown separately by the dotted red line) is not included. The two insets show the simulated profile of the fundamental modes at 1.7 µm (central wavelength of the pump pulses used in the experiments) and 3.2 µm. (c) Calculated effective index for the LP01-like core mode. It has a very smooth profile following the capillary model, except for a small, localized resonance at ~680 nm. (d) Group-velocity dispersion parameter β2 calculated analytically through the capillary model, showing the tunability of the dispersion.

Fig. 2
Fig. 2

Experimental set-up. The pump pulses were generated by an optical parametric amplifier, and are temporally characterized using a home-built SHG-FROG. The pulses were spatially filtered and expanded through the focusing lens L1, the collimating lens L2 (both made of CaF2) and a pin-hole (PH) with a 100 µm aperture. The beam is then focused through the CaF2 lens L3 into the SR-PCF, placed inside a gas cell connected to a vacuum pump and a gas line. The pump pulses enter the gas cell through a CaF2 window. The divergent beam at the fiber output exits the gas cell through another CaF2 window, and is then collimated by a parabolic mirror (PM) and sent to the diagnostic systems.

Fig. 3
Fig. 3

(a) The red curves show the spectrum measured by a monochromator in the near/mid-infrared, and the blue curves by a CCD-based spectrometer in the visible/UV. The black dashed lines mark the ZDW of the system, and N and A denote normal and anomalous dispersion. The positions of the dispersive wave peaks are marked by the initials DW. Upper plot: pump pulse energy 10 µJ, Kr pressure 18 bar. The black curve shows the spectral intensity (normalized to the maximum of the red spectrum)) generated with low-energy pump pulses (~500 nJ). Lower plot: pulse energy 4 µJ and Kr pressure 10 bar. (b) Simulations of the spectral (upper) and temporal (lower) evolution of a Gaussian pulse with an energy of 5 µJ propagating along a 5-cm-long SR-PCF filled with krypton at 18 bar. The dashed line in the spectral plot indicates the ZDW. (c) Upper: Far-field profile of the supercontinuum beam filtered at 490 nm and imaged onto a CCD camera. Lower: Fourier transform of the spectral intensity in the lower part of (a).

Fig. 4
Fig. 4

(a) Tuning the wavelength of the dispersive wave by varying the pump wavelength. Pulses of wavelength 1.6 (lower plot), 1.7 (middle plot) and 1.8 µm (upper plot) are coupled into the single-ring HC-PCF filled with krypton at 10 bar. The generated dispersive waves peak at 322, 310 and 305 nm, respectively. (b) Phase-mismatch between linear waves and the pump soliton for the same parameters considered in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β(ω)β( ω sol ) β 1 ( ω sol )[ω ω sol ]γ P C /2=0

Metrics