Abstract

We fabricated and characterized a silicon photonics 8 × 8 strictly non-blocking optical switch based on double-Mach–Zehnder (MZ) element switches. The double-MZ switches, each of which consisted of an intersection and two asymmetric MZ switches, enabled the suppression of crosstalk across a wide wavelength range. The 8 × 8 switch exhibited an average fiber-to-fiber insertion loss of 11.2 dB and -20 dB crosstalk in a bandwidth wider than 30 nm. Furthermore, we constructed an 8 × 8 polarization-diversity switch by using two 8 × 8 switches and demonstrated 32-Gbaud dual-polarization, quadrature-phase-shift-keying, four-channel wavelength-division-multiplexed signal transmission without significant signal degradation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch

Keijiro Suzuki, Ken Tanizawa, Takashi Matsukawa, Guangwei Cong, Sang-Hun Kim, Satoshi Suda, Morifumi Ohno, Tadashi Chiba, Hirofumi Tadokoro, Masashi Yanagihara, Yasushi Igarashi, Meishoku Masahara, Shu Namiki, and Hitoshi Kawashima
Opt. Express 22(4) 3887-3894 (2014)

16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers

Liangjun Lu, Shuoyi Zhao, Linjie Zhou, Dong Li, Zuxiang Li, Minjuan Wang, Xinwan Li, and Jianping Chen
Opt. Express 24(9) 9295-9307 (2016)

Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch

Ken Tanizawa, Keijiro Suzuki, Kazuhiro Ikeda, Shu Namiki, and Hitoshi Kawashima
Opt. Express 24(7) 6861-6868 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Kurumida, K. Ishii, A. Takefusa, Y. Tanimura, S. Yanagimachi, H. Takeshita, A. Tajima, K. Fukuchi, H. Honma, W. Odashima, H. Onaka, K. Tanizawa, K. Suzuki, S. Suda, K. Ikeda, H. Kawashima, H. Uetsuka, H. Matsuura, H. Kuwatsuka, K. Sato, T. Kudoh, and S. Namiki, “First demonstration of ultra-low-energy hierarchical multi-granular optical path network dynamically controlled through NSI-CS for video related applications,” in European Conference on Optical Communication (Optical Society of America, 2014), paper PD.1.3.
    [Crossref]
  2. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OTuM2.
    [Crossref]
  3. L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  4. T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8 × 8 silicon photonic switch based on optical phased array,” in European Conference and Exhibition on Optical Communication (IEEE, Valencia, 2015), paper P.2.9.
    [Crossref]
  5. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  6. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  7. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
    [Crossref] [PubMed]
  8. K. Tanizawa, K. Suzuki, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching Proceedings (online) (IEEE Photonics Society, Niigata, 2016), paper PD2–3.
  9. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol. 17(7), 1192–1199 (1999).
    [Crossref]
  10. K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband 8 × 8 Si-wire PILOSS switch with double Mach-Zehnder switch elements,” in European Conference and Exhibition on Optical Communication (VDE, Düsseldorf, 2016), paper W.4.P1.SC2.13.
  11. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  12. S. Suda, K. Tanizawa, K. Suzuki, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Fast and accurate calibration method for large-port-count Si-wire PILOSS optical switch,” in Asia Communications and Photonics Conference 2015 (Optical Society of America, Hong Kong, 2015), paper AS4A.2.
    [Crossref]
  13. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
    [Crossref] [PubMed]
  14. K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
    [Crossref]
  15. K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Silicon-photonics polarization-insensitive broadband strictly-non-blocking 8 × 8 blade switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (Optical Society of America, Los Angeles, 2017), paper Tu3F.5.
  16. K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
    [Crossref]

2016 (3)

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

2012 (1)

2010 (1)

1999 (1)

Baehr-Jones, T.

Chen, L.

Chen, Y.-K.

Chiba, T.

Cong, G.

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

Ding, R.

Goh, T.

Han, S.

Hasama, T.

Hattori, K.

Himeno, A.

Hochberg, M.

Igarashi, Y.

Ikeda, K.

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

Inoue, T.

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

Ishii, K.

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

Ishikawa, H.

Kawashima, H.

Kim, S. H.

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Kim, S.-H.

Kimura, T.

Kintaka, K.

Koshino, K.

Kurumida, J.

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

Lim, A. E. J.

Lo, G. Q.

Ma, Y.

Masahara, M.

Matsukawa, T.

Matsumaro, K.

Muller, R. S.

Namiki, S.

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

Novack, A.

Ohno, M.

Ohtsuka, M.

Okuno, M.

Quack, N.

Seki, M.

Seok, T. J.

Shoji, Y.

Suda, S.

Sugaya, T.

Suzuki, K.

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

Tadokoro, H.

Takahashi, H.

Tanizawa, K.

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

Toyama, M.

Wu, M. C.

Yanagihara, M.

Yang, S.

Yokoyama, N.

Zhang, Y.

IEEE Photonics J. (1)

K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, and H. Kawashima, “Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation,” IEEE Photonics Technol. Lett. 28(4), 457–460 (2016).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Optica (1)

Other (7)

S. Suda, K. Tanizawa, K. Suzuki, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Fast and accurate calibration method for large-port-count Si-wire PILOSS optical switch,” in Asia Communications and Photonics Conference 2015 (Optical Society of America, Hong Kong, 2015), paper AS4A.2.
[Crossref]

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Silicon-photonics polarization-insensitive broadband strictly-non-blocking 8 × 8 blade switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (Optical Society of America, Los Angeles, 2017), paper Tu3F.5.

T. Tanemura, L. Langouche, and Y. Nakano, “Strictly non-blocking 8 × 8 silicon photonic switch based on optical phased array,” in European Conference and Exhibition on Optical Communication (IEEE, Valencia, 2015), paper P.2.9.
[Crossref]

J. Kurumida, K. Ishii, A. Takefusa, Y. Tanimura, S. Yanagimachi, H. Takeshita, A. Tajima, K. Fukuchi, H. Honma, W. Odashima, H. Onaka, K. Tanizawa, K. Suzuki, S. Suda, K. Ikeda, H. Kawashima, H. Uetsuka, H. Matsuura, H. Kuwatsuka, K. Sato, T. Kudoh, and S. Namiki, “First demonstration of ultra-low-energy hierarchical multi-granular optical path network dynamically controlled through NSI-CS for video related applications,” in European Conference on Optical Communication (Optical Society of America, 2014), paper PD.1.3.
[Crossref]

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OTuM2.
[Crossref]

K. Tanizawa, K. Suzuki, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Silicon photonic 32 × 32 strictly-non-blocking blade switch and its full path characterization,” in 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching Proceedings (online) (IEEE Photonics Society, Niigata, 2016), paper PD2–3.

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband 8 × 8 Si-wire PILOSS switch with double Mach-Zehnder switch elements,” in European Conference and Exhibition on Optical Communication (VDE, Düsseldorf, 2016), paper W.4.P1.SC2.13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Conventional and (b) double-MZ switches.

Fig. 2
Fig. 2

8 × 8 path-independent insertion loss configuration based on double-MZ switches. The double-MZ switches are represented by white boxes with green dots.

Fig. 3
Fig. 3

(a) Microscope image of fabricated 8 × 8 double-MZ switch chip. (b) Switch chip die-bonded on ceramic chip carrier with 304 pin-grid-array. (c) Chip carrier on printed circuit board with control electronics.

Fig. 4
Fig. 4

Transmission spectra of double-MZ-element switch in (a) cross and (b) bar states. The vertical axes were normalized to the output power of a reference Si waveguide on the same chip.

Fig. 5
Fig. 5

Fiber-to-fiber insertion losses of all 64 paths at a wavelength of 1.535 μm. Path ID means port connection. 1: input port 1 to output port 1’, 2: 1–2’, …, 63: 8–7’, and 64: 8–8’.

Fig. 6
Fig. 6

(a) One of worst-crosstalk switch states. Path 8–7’ intersects with other paths 11 times. (b) Measured crosstalk of path 8–7’.

Fig. 7
Fig. 7

Leakage accumulation due to reflection at directional-coupler intersections. (i) First leakage in double-MZ switch. (ii) Second leakage at directional-coupler intersection. (iii) Accumulation of leakages in double-MZ switch and intersection.

Fig. 8
Fig. 8

Polarization dependences of all 64 paths. (a) PDL. (b) DGD.

Fig. 9
Fig. 9

Experimental setup for 32-Gbaud DP-QPSK WDM signal transmission. The fiber-based PBSs were used. AWG: arbitrary waveform generator; TE: transverse electric. The wavelength of the cw dummy was set to each of the four wavelengths listed along the left side of the image in the Q-factor and constellation measurements. A 2 × 2 butterfly adaptive equalizer was used in the signal demodulation process.

Fig. 10
Fig. 10

Measured Q-factor versus OSNR for wavelengths of (a) 1530.33 nm, (b) 1535.04 nm, (c) 1539.77 nm, and (d) 1544.53 nm.

Fig. 11
Fig. 11

Constellations observed with 20-dB OSNR for (a) back-to-back case at a wavelength of 1535.04 nm, and wavelengths of (b) 1530.33 nm, (c) 1535.04 nm, (d) 1539.77 nm, and (e) 1544.53 nm after the switch.

Metrics