H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

C. Wang and J. P. Yao, “Ultrahigh-resolution photonic-assisted microwave frequency identification based on temporal channelization,” IEEE Trans. Microw. Theory Tech. 61(12), 4275–4282 (2013).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).

[Crossref]

A. A. Adnani, J. Duplicy, and L. Philips, “Spectrum analyzers today and tomorrow: part 1 towards filter banks-enabled real-time spectrum analysis,” IEEE Instrum. Meas. Mag. 16(5), 6–11 (2013).

[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).

[Crossref]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).

[PubMed]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).

[Crossref]

C. Zhang, P. C. Chui, and K. K. Y. Wong, “Comparison of state-of-art phase modulators and parametric mixers in time-lens applications under different repetition rates,” Appl. Opt. 52(36), 8817–8826 (2013).

[Crossref]
[PubMed]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).

[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).

[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).

[Crossref]
[PubMed]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).

[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).

[Crossref]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).

[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).

[Crossref]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).

[Crossref]

C. V. Bennett, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65(20), 2513–2515 (1994).

[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

A. A. Adnani, J. Duplicy, and L. Philips, “Spectrum analyzers today and tomorrow: part 1 towards filter banks-enabled real-time spectrum analysis,” IEEE Instrum. Meas. Mag. 16(5), 6–11 (2013).

[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).

[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).

[Crossref]

C. V. Bennett, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65(20), 2513–2515 (1994).

[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).

[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

[Crossref]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).

[Crossref]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).

[PubMed]

C. Zhang, P. C. Chui, and K. K. Y. Wong, “Comparison of state-of-art phase modulators and parametric mixers in time-lens applications under different repetition rates,” Appl. Opt. 52(36), 8817–8826 (2013).

[Crossref]
[PubMed]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).

[Crossref]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

A. A. Adnani, J. Duplicy, and L. Philips, “Spectrum analyzers today and tomorrow: part 1 towards filter banks-enabled real-time spectrum analysis,” IEEE Instrum. Meas. Mag. 16(5), 6–11 (2013).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).

[Crossref]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).

[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).

[Crossref]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).

[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).

[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).

[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).

[Crossref]

C. V. Bennett, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65(20), 2513–2515 (1994).

[Crossref]

B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989).

[Crossref]
[PubMed]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).

[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).

[Crossref]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).

[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).

[Crossref]
[PubMed]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).

[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

A. A. Adnani, J. Duplicy, and L. Philips, “Spectrum analyzers today and tomorrow: part 1 towards filter banks-enabled real-time spectrum analysis,” IEEE Instrum. Meas. Mag. 16(5), 6–11 (2013).

[Crossref]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).

[Crossref]

C. V. Bennett, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65(20), 2513–2515 (1994).

[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

C. Wang and J. P. Yao, “Ultrahigh-resolution photonic-assisted microwave frequency identification based on temporal channelization,” IEEE Trans. Microw. Theory Tech. 61(12), 4275–4282 (2013).

[Crossref]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).

[Crossref]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).

[PubMed]

C. Zhang, P. C. Chui, and K. K. Y. Wong, “Comparison of state-of-art phase modulators and parametric mixers in time-lens applications under different repetition rates,” Appl. Opt. 52(36), 8817–8826 (2013).

[Crossref]
[PubMed]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).

[PubMed]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

C. Wang and J. P. Yao, “Ultrahigh-resolution photonic-assisted microwave frequency identification based on temporal channelization,” IEEE Trans. Microw. Theory Tech. 61(12), 4275–4282 (2013).

[Crossref]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).

[Crossref]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).

[PubMed]

C. Zhang, P. C. Chui, and K. K. Y. Wong, “Comparison of state-of-art phase modulators and parametric mixers in time-lens applications under different repetition rates,” Appl. Opt. 52(36), 8817–8826 (2013).

[Crossref]
[PubMed]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).

[Crossref]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).

[Crossref]

C. V. Bennett, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett. 65(20), 2513–2515 (1994).

[Crossref]

A. A. Adnani, J. Duplicy, and L. Philips, “Spectrum analyzers today and tomorrow: part 1 towards filter banks-enabled real-time spectrum analysis,” IEEE Instrum. Meas. Mag. 16(5), 6–11 (2013).

[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).

[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).

[Crossref]

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).

[Crossref]

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photonics Technol. Lett. 20(14), 1249–1251 (2008).

[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).

[Crossref]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).

[Crossref]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).

[Crossref]

W. Wang, R. Davis, T. Jung, R. Lodenkamper, L. Lembo, J. Brook, and M. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Tech. 49(10), 1996–2001 (2001).

[Crossref]

C. Wang and J. P. Yao, “Ultrahigh-resolution photonic-assisted microwave frequency identification based on temporal channelization,” IEEE Trans. Microw. Theory Tech. 61(12), 4275–4282 (2013).

[Crossref]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Tech. 54(2), 868–872 (2006).

[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).

[Crossref]

J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, “Photonic measurement of microwave frequency based on phase modulation,” Opt. Express 17(9), 7217–7221 (2009).

[Crossref]
[PubMed]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).

[Crossref]
[PubMed]

H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, “Microwave spectrum sensing based on photonic time stretch and compressive sampling,” Opt. Lett. 38(2), 136–138 (2013).

[Crossref]
[PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]
[PubMed]

B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989).

[Crossref]
[PubMed]

R. E. Saperstein, D. Panasenko, and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett. 29(5), 501–503 (2004).

[Crossref]
[PubMed]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]
[PubMed]

J. M. Heaton, C. D. Watson, S. B. Jones, M. M. Bourke, C. M. Boyne, G. W. Smith, and D. R. Wight, “Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on phased-array of GaAs-AlGaAs electrooptic waveguide delay lines,” Proc. SPIE 3278, 245–251 (1998).

[Crossref]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).

[PubMed]

Y. Duan, H. Zhou, L. Chen, C. Zhang, and X. Zhang, “Ultrafast and large bandwidth spectrum analyzer based on microwave photonics and temporal magnification, ” in Asia Communications and Photonics Conference 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper AF2A.15.

[Crossref]

T. S. Rapport, Wireless Communications: Principles & Practice (Prentice Hall, 1996).

A. W. Rihaczek, Principles of High-Resolution Radar (Artech House, 1996).