Abstract

Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a new scheme for synthesis of optical spectra from nonlinear ultrasound harmonics using a hybrid liquid-state and nanoplasmonic device compatible with fibre-optic technology. The synthesised spectra consist of a set of equally spaced optical Brillouin light scattering modes having a well-defined phase relationship between each other. We suggest that these spectra may be employed as optical frequency combs whose spectral composition may be tuned by controlling the nonlinear acoustic interactions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator

Ville Ulvila, C. R. Phillips, Lauri Halonen, and Markku Vainio
Opt. Express 22(9) 10535-10543 (2014)

Broadband phase-coherent optical frequency synthesis with actively linked Ti:sapphire and Cr:forsterite femtosecond lasers

Albrecht Bartels, Nathan R. Newbury, Isabell Thomann, Leo Hollberg, and Scott A. Diddams
Opt. Lett. 29(4) 403-405 (2004)

High-resolution ultrasound-modulated optical tomography in biological tissues

Sava Sakadžić and Lihong V. Wang
Opt. Lett. 29(23) 2770-2772 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Diels and W. Rudolph, Ultrashort Laser Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).
  2. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
    [Crossref]
  3. J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
    [Crossref]
  4. A. A. Savchenkov, A. B. Matsko, and L. Maleki, “On frequency combs in monolithic resonators,” Nanophotonics 5, 363–391 (2016).
    [Crossref]
  5. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  6. P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014).
    [Crossref]
  7. Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, “Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators,” Opt. Lett. 41, 1736–1739 (2016).
    [Crossref] [PubMed]
  8. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011).
    [Crossref] [PubMed]
  9. P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
    [Crossref]
  10. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  11. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  12. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  13. I. S. Maksymov, A. E. Miroshnichenko, and Yu. S. Kivshar, “Cascaded four-wave mixing in tapered plasmonic nanoantenna,” Opt. Lett. 38, 79–81 (2013).
    [Crossref] [PubMed]
  14. X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
    [Crossref] [PubMed]
  15. N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
    [Crossref] [PubMed]
  16. I. L. Fabelinskii, Molecular Scattering of Light (Springer, 1968).
    [Crossref]
  17. S. N. Gurbatov, O. V. Rudenko, and C. M. Hedberg, Nonlinear Acoustic Through Problems and Examples (Trafford, 2009).
  18. M. Wegener, Extreme Nonlinear Optics: An Introduction (Springer, 2005).
  19. Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
    [Crossref]
  20. M. F. Hamilton, V. A. Khokhlova, and O. V. Rudenko, “Analytical method for describing the paraxial region of finite amplitude sound beams,” J. Acoust. Soc. Am. 101, 1297–1308 (1997).
    [Crossref]
  21. T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
    [Crossref]
  22. Z. Meng, V. V. Yakovlev, and Z. Utegulov, “Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanostructures,” Proc. SPIE 9340, 93400Z (2015).
    [Crossref]
  23. I. S. Maksymov and A. D. Greentree, “Plasmonic nanoantenna hydrophones,” Sci. Rep. 6, 32892 (2016).
    [Crossref] [PubMed]
  24. E. Eunjung Jung and D. Erickson, “Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids,” Lab Chip 12, 2575–2579 (2012).
    [Crossref]
  25. C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
    [Crossref] [PubMed]
  26. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
    [Crossref]
  27. R. Altkorn, I. Koev, R. P. Van Duyne, and M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36, 8992–8998 (1997).
    [Crossref]
  28. P. C. Scholten, “The origin of magnetic birefringence and dichroism in magnetic fluids,” IEEE Trans. Magnet. MAG-16, 221–225 (1980).
    [Crossref]
  29. V. I. Stepanov and Yu. L. Raikher, “Dynamic birefringence in magnetic fluids with allowance for mechanical and magnetic degrees of freedom of the particles,” J. Magn. Magn. Mater. 252, 180–182 (2002).
    [Crossref]
  30. I. S. Maksymov, “Magneto-plasmonic nanoantennas: basics and applications,” Rev. Phys. 1, 36–51 (2016).
    [Crossref]
  31. J. Wu, D. Xiang, and R. Gordon, “Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing,” Opt. Express 24, 12458–12465 (2016).
    [Crossref] [PubMed]
  32. D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47, 013001 (2014)
    [Crossref]
  33. K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
    [Crossref]
  34. W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
    [Crossref] [PubMed]
  35. R. Fleury, A. B. Khanikaev, and A. Alù, “Floquet topological insulators for sound,” Nat. Commun. 7, 11744 (2016).
    [Crossref] [PubMed]
  36. D. Rossing, Spinger Handbook of Acoustics (Springer, 2007).
    [Crossref]
  37. A. A. Maznev and O. B. Wright, “Upholding the diffraction limit in the focusing of light and sound,” arXiv:1602.07958.
  38. T. G. Leighton, The Acoustic Bubble (Academic, 1994).

2016 (10)

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

A. A. Savchenkov, A. B. Matsko, and L. Maleki, “On frequency combs in monolithic resonators,” Nanophotonics 5, 363–391 (2016).
[Crossref]

Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, “Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators,” Opt. Lett. 41, 1736–1739 (2016).
[Crossref] [PubMed]

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
[Crossref] [PubMed]

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

I. S. Maksymov, “Magneto-plasmonic nanoantennas: basics and applications,” Rev. Phys. 1, 36–51 (2016).
[Crossref]

J. Wu, D. Xiang, and R. Gordon, “Characterizing gold nanorods in aqueous solution by acoustic vibrations probed with four-wave mixing,” Opt. Express 24, 12458–12465 (2016).
[Crossref] [PubMed]

I. S. Maksymov and A. D. Greentree, “Plasmonic nanoantenna hydrophones,” Sci. Rep. 6, 32892 (2016).
[Crossref] [PubMed]

R. Fleury, A. B. Khanikaev, and A. Alù, “Floquet topological insulators for sound,” Nat. Commun. 7, 11744 (2016).
[Crossref] [PubMed]

2015 (4)

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Z. Meng, V. V. Yakovlev, and Z. Utegulov, “Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanostructures,” Proc. SPIE 9340, 93400Z (2015).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

2014 (7)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47, 013001 (2014)
[Crossref]

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

E. Eunjung Jung and D. Erickson, “Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids,” Lab Chip 12, 2575–2579 (2012).
[Crossref]

2011 (2)

2003 (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[Crossref]

2002 (1)

V. I. Stepanov and Yu. L. Raikher, “Dynamic birefringence in magnetic fluids with allowance for mechanical and magnetic degrees of freedom of the particles,” J. Magn. Magn. Mater. 252, 180–182 (2002).
[Crossref]

1997 (2)

R. Altkorn, I. Koev, R. P. Van Duyne, and M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36, 8992–8998 (1997).
[Crossref]

M. F. Hamilton, V. A. Khokhlova, and O. V. Rudenko, “Analytical method for describing the paraxial region of finite amplitude sound beams,” J. Acoust. Soc. Am. 101, 1297–1308 (1997).
[Crossref]

1980 (1)

P. C. Scholten, “The origin of magnetic birefringence and dichroism in magnetic fluids,” IEEE Trans. Magnet. MAG-16, 221–225 (1980).
[Crossref]

Åkerman, J.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Altkorn, R.

Alù, A.

R. Fleury, A. B. Khanikaev, and A. Alù, “Floquet topological insulators for sound,” Nat. Commun. 7, 11744 (2016).
[Crossref] [PubMed]

Beck, M.

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

Beha, K.

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014).
[Crossref]

Bonzon, C.

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Chakraborty, D.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Chang, W.-S.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Chew, W. C.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
[Crossref] [PubMed]

Coillet, A.

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

de Oliveira, T. V. A. G.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Del’Haye, P.

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Diddams, S. A.

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).

Dmitriev, A.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Edmond, K. V.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Erickson, D.

E. Eunjung Jung and D. Erickson, “Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids,” Lab Chip 12, 2575–2579 (2012).
[Crossref]

Eunjung Jung, E.

E. Eunjung Jung and D. Erickson, “Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids,” Lab Chip 12, 2575–2579 (2012).
[Crossref]

Fabelinskii, I. L.

I. L. Fabelinskii, Molecular Scattering of Light (Springer, 1968).
[Crossref]

Faist, J.

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

Fleury, R.

R. Fleury, A. B. Khanikaev, and A. Alù, “Floquet topological insulators for sound,” Nat. Commun. 7, 11744 (2016).
[Crossref] [PubMed]

Glotzer, S. C.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Gordon, R.

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Greentree, A. D.

I. S. Maksymov and A. D. Greentree, “Plasmonic nanoantenna hydrophones,” Sci. Rep. 6, 32892 (2016).
[Crossref] [PubMed]

Gregorczyk, K. E.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Grier, D. G.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Guo, D.

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47, 013001 (2014)
[Crossref]

Gurbatov, S. N.

S. N. Gurbatov, O. V. Rudenko, and C. M. Hedberg, Nonlinear Acoustic Through Problems and Examples (Trafford, 2009).

Halas, N. J.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Hamilton, M. F.

M. F. Hamilton, V. A. Khokhlova, and O. V. Rudenko, “Analytical method for describing the paraxial region of finite amplitude sound beams,” J. Acoust. Soc. Am. 101, 1297–1308 (1997).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Hedberg, C. M.

S. N. Gurbatov, O. V. Rudenko, and C. M. Hedberg, Nonlinear Acoustic Through Problems and Examples (Trafford, 2009).

Herr, T.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Hugi, A.

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

Ilchenko, V. S.

Jankowski, E.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Jiang, L. J.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
[Crossref] [PubMed]

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Jyoti Krishnatreya, B.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Kataja, M.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Khanikaev, A. B.

R. Fleury, A. B. Khanikaev, and A. Alù, “Floquet topological insulators for sound,” Nat. Commun. 7, 11744 (2016).
[Crossref] [PubMed]

Khokhlova, T.

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

Khokhlova, V.

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

Khokhlova, V. A.

M. F. Hamilton, V. A. Khokhlova, and O. V. Rudenko, “Analytical method for describing the paraxial region of finite amplitude sound beams,” J. Acoust. Soc. Am. 101, 1297–1308 (1997).
[Crossref]

Kippenberg, T. J.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Kivshar, Yu. S.

Knez, M.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Koev, I.

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kreider, W.

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[Crossref]

Lanzillotti-Kimura, N. D.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

Leighton, T. G.

T. G. Leighton, The Acoustic Bubble (Academic, 1994).

Lin, W.-J.

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

Link, S.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Litorja, M.

Liu, L.

Liu, S.

Liu, S.-L.

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

Lo, Y. H.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
[Crossref] [PubMed]

Loh, W.

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Lu, Q.

Luo, J.

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47, 013001 (2014)
[Crossref]

Maccaferri, N.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[Crossref]

Maksymov, I. S.

I. S. Maksymov and A. D. Greentree, “Plasmonic nanoantenna hydrophones,” Sci. Rep. 6, 32892 (2016).
[Crossref] [PubMed]

I. S. Maksymov, “Magneto-plasmonic nanoantennas: basics and applications,” Rev. Phys. 1, 36–51 (2016).
[Crossref]

I. S. Maksymov, A. E. Miroshnichenko, and Yu. S. Kivshar, “Cascaded four-wave mixing in tapered plasmonic nanoantenna,” Opt. Lett. 38, 79–81 (2013).
[Crossref] [PubMed]

Maleki, L.

Matsko, A. B.

Maxwell, A.

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

Maznev, A. A.

A. A. Maznev and O. B. Wright, “Upholding the diffraction limit in the focusing of light and sound,” arXiv:1602.07958.

Meng, Z.

Z. Meng, V. V. Yakovlev, and Z. Utegulov, “Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanostructures,” Proc. SPIE 9340, 93400Z (2015).
[Crossref]

Miroshnichenko, A. E.

Nordlander, P.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

O’Brien, K.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

O’Donnell, M.

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

Papp, S. B.

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014).
[Crossref]

Peng, Z.-F.

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

Phillips, C. L.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Pine, D. J.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Pirzadeh, Z.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Raikher, Yu. L.

V. I. Stepanov and Yu. L. Raikher, “Dynamic birefringence in magnetic fluids with allowance for mechanical and magnetic degrees of freedom of the particles,” J. Magn. Magn. Mater. 252, 180–182 (2002).
[Crossref]

Rho, J.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

Rösch, M.

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

Rossing, D.

D. Rossing, Spinger Handbook of Acoustics (Springer, 2007).
[Crossref]

Rudenko, O. V.

M. F. Hamilton, V. A. Khokhlova, and O. V. Rudenko, “Analytical method for describing the paraxial region of finite amplitude sound beams,” J. Acoust. Soc. Am. 101, 1297–1308 (1997).
[Crossref]

S. N. Gurbatov, O. V. Rudenko, and C. M. Hedberg, Nonlinear Acoustic Through Problems and Examples (Trafford, 2009).

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).

Sacanna, S.

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Sader, J. E.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Sapozhnikov, O.

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

Savchenkov, A. A.

Scalari, G.

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

Scholten, P. C.

P. C. Scholten, “The origin of magnetic birefringence and dichroism in magnetic fluids,” IEEE Trans. Magnet. MAG-16, 221–225 (1980).
[Crossref]

Seidel, D.

Sha, W. E. I.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
[Crossref] [PubMed]

Shuang, B.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Stepanov, V. I.

V. I. Stepanov and Yu. L. Raikher, “Dynamic birefringence in magnetic fluids with allowance for mechanical and magnetic degrees of freedom of the particles,” J. Magn. Magn. Mater. 252, 180–182 (2002).
[Crossref]

Su, C.

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

Su, M.-N.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Suchowski, H.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

Torres-Company, V.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Utegulov, Z.

Z. Meng, V. V. Yakovlev, and Z. Utegulov, “Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanostructures,” Proc. SPIE 9340, 93400Z (2015).
[Crossref]

van Dijken, S.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Van Duyne, R. P.

Vavassori, P.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Villares, G.

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Wang, X.-M.

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

Wegener, M.

M. Wegener, Extreme Nonlinear Optics: An Introduction (Springer, 2005).

Weiner, A. M.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Wen, F.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Wright, O. B.

A. A. Maznev and O. B. Wright, “Upholding the diffraction limit in the focusing of light and sound,” arXiv:1602.07958.

Wu, J.

Wu, X.

Xiang, D.

Xie, G.

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47, 013001 (2014)
[Crossref]

Xiong, X. Y. Z.

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
[Crossref] [PubMed]

Xu, L.

Yakovlev, V. V.

Z. Meng, V. V. Yakovlev, and Z. Utegulov, “Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanostructures,” Proc. SPIE 9340, 93400Z (2015).
[Crossref]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[Crossref]

Yin, X.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Zhang, H.-L.

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

Zhang, X.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

Zhang, Y.

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[Crossref]

Chin. Phys. Lett. (1)

Z.-F. Peng, W.-J. Lin, S.-L. Liu, C. Su, H.-L. Zhang, and X.-M. Wang, “Phase relation of harmonics in nonlinear focused ultrasound,” Chin. Phys. Lett. 33, 084301 (2016).
[Crossref]

IEEE Trans. Magnet. (1)

P. C. Scholten, “The origin of magnetic birefringence and dichroism in magnetic fluids,” IEEE Trans. Magnet. MAG-16, 221–225 (1980).
[Crossref]

J. Acoust. Soc. Am. (2)

M. F. Hamilton, V. A. Khokhlova, and O. V. Rudenko, “Analytical method for describing the paraxial region of finite amplitude sound beams,” J. Acoust. Soc. Am. 101, 1297–1308 (1997).
[Crossref]

T. Khokhlova, A. Maxwell, W. Kreider, V. Khokhlova, M. O’Donnell, and O. Sapozhnikov, “A method for phase aberration correction of high intensity focused ultrasound fields using acoustic nonlinearity,” J. Acoust. Soc. Am. 140, 3083 (2016).
[Crossref]

J. Magn. Magn. Mater. (1)

V. I. Stepanov and Yu. L. Raikher, “Dynamic birefringence in magnetic fluids with allowance for mechanical and magnetic degrees of freedom of the particles,” J. Magn. Magn. Mater. 252, 180–182 (2002).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Guo, G. Xie, and J. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D Appl. Phys. 47, 013001 (2014)
[Crossref]

Lab Chip (1)

E. Eunjung Jung and D. Erickson, “Continuous operation of a hybrid solid-liquid state reconfigurable photonic system without resupply of liquids,” Lab Chip 12, 2575–2579 (2012).
[Crossref]

Laser Photonics Rev. (1)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Nanophotonics (2)

J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, “Quantum cascade laser frequency combs,” Nanophotonics 5, 272–291 (2016).
[Crossref]

A. A. Savchenkov, A. B. Matsko, and L. Maleki, “On frequency combs in monolithic resonators,” Nanophotonics 5, 363–391 (2016).
[Crossref]

Nat. Commun. (5)

P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A. Diddams, “Phase steps and resonator detuning measurements in microresonator frequency combs,” Nat. Commun. 6, 5668 (2015).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref] [PubMed]

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in complex nanostructures,” Nat. Commun. 5, 4042 (2014).
[Crossref]

W.-S. Chang, F. Wen, D. Chakraborty, M.-N. Su, Y. Zhang, B. Shuang, P. Nordlander, J. E. Sader, N. J. Halas, and S. Link, “Tuning the acoustic frequency of a gold nanodisk through its adhesion layer,” Nat. Commun. 6, 7022 (2015).
[Crossref] [PubMed]

R. Fleury, A. B. Khanikaev, and A. Alù, “Floquet topological insulators for sound,” Nat. Commun. 7, 11744 (2016).
[Crossref] [PubMed]

Nat. Photonics (3)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

P. Del’Haye, K. Beha, S. B. Papp, and S. A. Diddams, “Self-injection locking and phase-locked states in microresonator-based optical frequency combs,” Phys. Rev. Lett. 112, 043905 (2014).
[Crossref]

Proc. SPIE (1)

Z. Meng, V. V. Yakovlev, and Z. Utegulov, “Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanostructures,” Proc. SPIE 9340, 93400Z (2015).
[Crossref]

Rev. Phys. (1)

I. S. Maksymov, “Magneto-plasmonic nanoantennas: basics and applications,” Rev. Phys. 1, 36–51 (2016).
[Crossref]

Sci. Rep. (2)

I. S. Maksymov and A. D. Greentree, “Plasmonic nanoantenna hydrophones,” Sci. Rep. 6, 32892 (2016).
[Crossref] [PubMed]

X. Y. Z. Xiong, L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear Yagi-Uda nanoantennas,” Sci. Rep. 6, 18872 (2016).
[Crossref] [PubMed]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Soft Matter (1)

C. L. Phillips, E. Jankowski, B. Jyoti Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, “Digital colloids: reconfigurable clusters as high information density elements,” Soft Matter 10, 7468–7479 (2014).
[Crossref] [PubMed]

Other (7)

D. Rossing, Spinger Handbook of Acoustics (Springer, 2007).
[Crossref]

A. A. Maznev and O. B. Wright, “Upholding the diffraction limit in the focusing of light and sound,” arXiv:1602.07958.

T. G. Leighton, The Acoustic Bubble (Academic, 1994).

J.-C. Diels and W. Rudolph, Ultrashort Laser Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996).

I. L. Fabelinskii, Molecular Scattering of Light (Springer, 1968).
[Crossref]

S. N. Gurbatov, O. V. Rudenko, and C. M. Hedberg, Nonlinear Acoustic Through Problems and Examples (Trafford, 2009).

M. Wegener, Extreme Nonlinear Optics: An Introduction (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Sketch of a typical BLS spectrum. (b) Schematic of a nanorod NA immersed into water and insonated by ultrasound (US). The direction of propagation of light is shown schematically for the case of a standalone NA, and it has to be along the z-axis when the NA operates inside the water-filled fibre shown in (c, d). The wavelength of ultrasound is two orders of magnitude larger than the width w = 30 nm and length L = 340 nm of the NA. The E-field of the optical plane wave incident on the NA is polarised along the y-coordinate. (c) |E|-field intensity in the cross-section of the water-filled core (Rcore = 250 μm) fibre with a Teflon coating (RTeflon = 525 μm). The fibre is surrounded by water. The optical frequency is 405 THz. (d) Instantaneous time-domain snapshot of the Txx stress component in the cross-section of the fibre and surrounding water. Note that the incident ultrasound wavefront is almost unchanged by the fibre. The frequency of ultrasound is 10 MHz.

Fig. 2
Fig. 2

Optical properties of the NA. The insets show the near-field |Ey|-field profiles (top) and far-field power profile (bottom) corresponding to the fundamental (158.5 THz) and higher-order (405 THz) modes. The far-field power profile of the higher-order mode is multiplied by 500.

Fig. 3
Fig. 3

Distance-dependent amplitudes of the first six harmonics of an initially sinusoidal ultrasound wave. The second and higher harmonic amplitudes are multiplied by 2 for the sake of visualisation, because they are small as compared with the amplitude of the fundamental harmonic.

Fig. 4
Fig. 4

(a) Optical spectra synthesised from NL ultrasound by the BLS effect. The optical intensity is shown as a function of the frequency shift with respect to 405 THz (the frequency of incident light), normalised to the frequency fus of the incident ultrasound. Red solid line: NA-enhanced spectrum. Green dashed line: without the NA. (b) Phase corresponding to the peaks of the NA-enhanced spectrum. Note a small change of the phase when viewed at the −π to π scale. The solid line is the guide to the eye only. Note that the phase of the ninth and higher modes could not be extracted, as explained in the main text.

Fig. 5
Fig. 5

Fourier transformation of the BLS mode spectrum shown in Fig. 4. The time scale is given in the units of Tp = 1/δ, where δ is the frequency spacing between the BLS modes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 ξ t 2 = c 0 2 2 ξ / x 2 ( 1 + ξ / x ) γ + 1 .
u u 0 = n = 1 B n ( z S ) sin ( n ω τ ) ,

Metrics