Abstract

We extend our previous simulation study and we present experimental results regarding our Fast Fourier Transform method for the calculation of the resonance shifts in biosensors based on micro-ring resonators (MRRs). For the simulation study, we use a system model with a tunable laser at 850 nm, an MRR with 1.5∙104 quality factor, and a detection system with 50 dB maximum signal-to-noise ratio, and investigate the impact on the system performance of factors like the number of the resonance peaks inside the scanning window, the wavelength dependence of the laser power, and the asymmetry of the transfer functions of the MRRs. We find that the performance is improved by a factor of 2 when we go from single- to four-peak transfer functions, and that the impact of the wavelength dependence of the laser power is very low. We also find that the presence of asymmetries can lead to strong discontinuities of the transfer functions at the edges of the scanning window and can significantly increase the measurement errors, making necessary the use of techniques for their elimination. Using these conclusions, we build a system with sensing MRRs on TriPleX platform, and we experimentally validate our method using sucrose solutions with different concentrations. Involving techniques in order to exclude the noise originating from the microfluidic system, we achieve a wavelength resolution close to 0.08 pm, when the system operates with 0.5 pm scanning step. In combination with the sensitivity of the MRRs, which is measured to be equal to 93.7 nm/RIU, this wavelength resolution indicates the possibility for a limit of detection close to 8.5·10−7 RIU, which represents to the best of our knowledge a record performance for this type of optical sensors and this level of scanning steps.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data

Lefteris Gounaridis, Panos Groumas, Erik Schreuder, Rene Heideman, Hercules Avramopoulos, and Christos Kouloumentas
Opt. Express 24(7) 7611-7632 (2016)

Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator

T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt
Opt. Express 22(21) 25333-25346 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [Crossref]
  2. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  4. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express 18(11), 11859–11866 (2010).
    [Crossref] [PubMed]
  5. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
    [Crossref] [PubMed]
  6. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [Crossref]
  7. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
    [Crossref]
  8. R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
    [Crossref] [PubMed]
  9. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [Crossref]
  10. R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a- chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
    [Crossref]
  11. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  12. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  13. L. Gui and S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peaklocking in digital PIV evaluation,” Exp. Fluids 32(4), 506–517 (2002).
    [Crossref]
  14. L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
    [Crossref] [PubMed]
  15. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  16. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).
  17. A. Lamberti, S. Vanlanduit, B. De Pauw, and F. Berghmans, “A novel fast phase correlation algorithm for peak wavelength detection of Fiber Bragg Grating sensors,” Opt. Express 22(6), 7099–7112 (2014).
    [Crossref] [PubMed]
  18. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
    [Crossref]
  19. L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).
  20. G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

2016 (2)

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

2015 (3)

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

2012 (2)

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a- chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (1)

2010 (2)

N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express 18(11), 11859–11866 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (2)

2006 (2)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

2002 (1)

L. Gui and S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peaklocking in digital PIV evaluation,” Exp. Fluids 32(4), 506–517 (2002).
[Crossref]

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Agarwal, A.

Aldridge, J. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Anthes-Washburn, M. S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Armenise, M. N.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Avramopoulos, H.

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bartolozzi, I.

Bauters, J. F.

Berghmans, F.

Besselink, G. A. J.

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bowers, J. E.

Campanella, C. E.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Campanella, C. M.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Chalyan, T.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Chbouki, N.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Ciminelli, C.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dale, P. S.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Pauw, B.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

Dell’Olio, F.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Desai, T. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Falke, F.

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

Fan, X.

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Gandolfi, D.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Gill, M.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Goldberg, B. B.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Gounaridis, L.

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

Groumas, P.

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

Gui, L.

L. Gui and S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peaklocking in digital PIV evaluation,” Exp. Fluids 32(4), 506–517 (2002).
[Crossref]

Guider, R.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Heck, M. J. R.

Heideman, R.

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a- chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Heideman, R. G.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Hens, Z.

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hoekman, M.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a- chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Hryniewicz, J.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Hu, J.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Katopodis, V.

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

Kimerling, L. C.

Kouloumentas, C.

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Lamberti, A.

Leinse, A.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Little, B. E.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Lommens, P.

Oliver King, V.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Pasquardini, L.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Pavesi, L.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Pederzolli, C.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Popat, K. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Pucker, G.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Sai Chu, D.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Samusenko, A.

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Schacht, E.

Schreuder, E.

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a- chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Spencer, D. T.

Sun, X.

Suter, J. D.

Tien, M.-C.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Unlu,

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Van,

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Van den Vlekkert, H. H.

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vanlanduit, S.

Wereley, S. T.

L. Gui and S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peaklocking in digital PIV evaluation,” Exp. Fluids 32(4), 506–517 (2002).
[Crossref]

Wevers, L. S.

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

White, I. M.

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Yalcin, A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Yebo, N. A.

Zhu, H.

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Exp. Fluids (1)

L. Gui and S. T. Wereley, “A correlation-based continuous window-shift technique to reduce the peaklocking in digital PIV evaluation,” Exp. Fluids 32(4), 506–517 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

R. Heideman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a- chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

J. Biosensors Bioelectronics (1)

G. A. J. Besselink, R. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosensors Bioelectronics 7(2), 209 (2016).

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Opt. Express (7)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express 18(11), 11859–11866 (2010).
[Crossref] [PubMed]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24(7), 7611–7632 (2016).
[Crossref] [PubMed]

A. Lamberti, S. Vanlanduit, B. De Pauw, and F. Berghmans, “A novel fast phase correlation algorithm for peak wavelength detection of Fiber Bragg Grating sensors,” Opt. Express 22(6), 7099–7112 (2014).
[Crossref] [PubMed]

Proc. IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[Crossref]

Prog. Quantum Electron. (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Sensor Actuat. Biol. Chem. (1)

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, V. Katopodis, C. Kouloumentas, and H. Avramopoulos, “Design of grating couplers and MMI couplers on the TriPleX platform enabling ultra-compact photonic-based biosensors,” Sensor Actuat. Biol. Chem. 209, 1057 (2015).

Sensors (Basel) (1)

R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, and L. Pavesi, “Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection,” Sensors (Basel) 15(7), 17300–17312 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Typical pair of initial and wavelength shifted TF of an MRR with Q-factor equal to 104 and ɑ equal to 0.9 for an effective RI change of 10−6: (a) Options for a symmetric scanning window with one, two or four resonance peaks, and (b) Zoom-in on the rightmost resonance peaks of the two TFs.

Fig. 2
Fig. 2

System performance using the FFT method as a function of the number of resonance peaks and the scanning step: (a) Mean error, and (b) 3σ standard deviation in the calculation of the resonance shift. The results refer to Monte Carlo simulations with 10.000 runs for each point in the two contour plots. The simulations were made for an effective RI change equal to 10−6, using an MRR with Q-factor = 104and ɑ = 0.9. The model measurement system has both amplitude (SNRmax = 50 dB) and spectral noise (σλ = 0.4·Δλ).

Fig. 3
Fig. 3

(a) Initial and wavelength shifted TF of our model MRR in the presence of wavelength dependence of the laser output power, and options for a symmetric scanning window with one, two or four resonance peaks. (b) 3σ standard deviation in the calculation of the resonance shift using the FFT method as a function of the scanning step in the case of presence or absence of wavelength dependence of the laser output power.

Fig. 4
Fig. 4

(a) Five different TFs of our model MRR corresponding to five different relative positions inside a scanning window with range equal to four times the FSR. (b) Zoom-in on the lower and the upper edge of the scanning window revealing the edge discontinuity for each one of the five cases.

Fig. 5
Fig. 5

System performance using the FFT method in the five cases of the relative position of the TF of our model MRR inside the scanning window: (a) Mean error, and (b) 3σ standard deviation in the calculation of the resonance shift as a function of the scanning step for an effective RI change of 10−6.

Fig. 6
Fig. 6

Layout of the photonic integrated circuit on TriPleX platform for the experimental validation of our method. The circuit comprises one MZI, one reference MRR and six sensing MRRs that share a common sensing window. The cross-section of the waveguiding structure is shown in the inset. It is based on a single strip of silicon nitride surrounded by silicon oxide and supports single mode operation at 850 nm.

Fig. 7
Fig. 7

Experimental setup for the validation of the FFT method. It is based on the use of the TriPleX chip of Fig. 6 and a microfluidic system that delivers sucrose solutions with different concentrations inside the sensing window of the MRRs. The bulk RI change due to the sucrose solutions is estimated through the resonance shift of the MRRs, which is calculated using the FFT method. The photograph in the upper right part shows the holder that holds together the TriPleX and the microfluidic chip.

Fig. 8
Fig. 8

(a) Indicative snapshot of the measurement process, showing the TFs of the reference and the sensing MRRs inside the scanning window from 854.175 to 856.035 nm. (b) Algorithm for the selection of a smaller window for data processing out of the initial scanning window in the case of the reference MRR. The data processing window is symmetrical and has a width twice as large as the FSR of the MRR. The inset in Fig. 8(b) presents a zoom-in on the TF peak.

Fig. 9
Fig. 9

(a) Time evolution of the cumulative resonance shifts corresponding to the reference and the three sensing MRRs during the execution of our main microfluidic protocol with a total duration of 2600 sec. The measurements have been performed using our FFT method with 1 Hz scanning frequency and 0.5 pm scanning step. (b) Results from the execution of the same protocol with a scanning step of 8 pm.

Fig. 10
Fig. 10

(a) Extraction of the sensitivity of each MRR based on the resonance shift difference of the second, third and fourth plateau from the first one, and the difference in the RI of the corresponding sucrose solutions. The sensitivity is extracted from the slope of the fitted curves for the different MRRs and scanning steps. (b) Dependence of the wavelength resolution (given as the 3σ standard deviation of the measurements) on the scanning step in the case of operation with constant microfluidic flow (2 µl/s) and the case of stagnant sucrose solutions on the MRRs. In the case of stagnant solutions, the processing of the measurements has been made both with the FFT method and with two veriations of the Lorentzian fitting method. The theoretical curve according to the simulations in Fig. 3(b) is also presented as a reference.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f( x )= 1 2π a ( xb ) 2 + ( c 2 ) 2

Metrics