Abstract

Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion

Robert T. Murray, Edmund J. R. Kelleher, Sergei V. Popov, Arnaud Mussot, Alexandre Kudlinski, and James R. Taylor
Opt. Express 21(13) 15826-15833 (2013)

Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy

Mario Chemnitz, Martin Baumgartl, Tobias Meyer, Cesar Jauregui, Benjamin Dietzek, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(24) 26583-26595 (2012)

Gain saturation in a Raman-assisted fiber optical parametric amplifier

Xiaojie Guo, Xuelei Fu, and Chester Shu
Opt. Lett. 38(21) 4405-4408 (2013)

References

  • View by:
  • |
  • |
  • |

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
    [Crossref]
  2. C. E. Max, K. Avicola, J. M. Brase, H. W. Friedman, H. D. Bissinger, J. Duff, D. T. Gavel, J. A. Horton, R. Kiefer, J. R. Morris, S. S. Olivier, R. W. Presta, D. A. Rapp, J. T. Salmon, and K. E. Waltjen, “Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics,” J. Opt. Soc. Am. A 11(2), 813–824 (1994).
    [Crossref]
  3. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [Crossref] [PubMed]
  4. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
    [Crossref] [PubMed]
  5. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
    [Crossref] [PubMed]
  6. J. Boullet, R. Dubrasquet, C. Médina, R. Bello-Doua, N. Traynor, and E. Cormier, “Millijoule-class Yb-doped pulsed fiber laser operating at 977 nm,” Opt. Lett. 35(10), 1650–1652 (2010).
    [Crossref] [PubMed]
  7. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [Crossref] [PubMed]
  8. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
    [Crossref]
  9. J. Kim, P. Dupriez, D. B. S. Soh, J. K. Sahu, J. Nilsson, and D. Payne, “Nd:Al-doped depressed clad hollow fiber laser at 930nm,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper MC5.
  10. A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31(10), 1388–1390 (2006).
    [Crossref] [PubMed]
  11. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B 24(8), 1749–1755 (2007).
    [Crossref]
  12. E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
    [Crossref]
  13. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
    [Crossref] [PubMed]
  14. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  15. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
    [Crossref]
  16. P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express 19(25), 25337–25345 (2011).
    [Crossref] [PubMed]
  17. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion,” Opt. Express 21(13), 15826–15833 (2013).
    [Crossref] [PubMed]
  18. J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23(22), 28531–28545 (2015).
    [Crossref] [PubMed]
  19. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [Crossref] [PubMed]
  20. P. Steinvurzel, J. Demas, B. Tai, Y. Chen, L. Yan, and S. Ramachandran, “Broadband parametric wavelength conversion at 1 μm with large mode area fibers,” Opt. Lett. 39(4), 743–746 (2014).
    [Crossref] [PubMed]
  21. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
    [Crossref]
  22. H. Steffensen, J. R. Ott, K. Rottwitt, and C. J. McKinstrie, “Full and semi-analytic analyses of two-pump parametric amplification with pump depletion,” Opt. Express 19(7), 6648–6656 (2011).
    [Crossref] [PubMed]
  23. O. Shatrovoy, L. Rishøj, and S. Ramachandran, “Simultaneous mode and nonlinear-frequency conversion of HOMs,” Proc. SPIE 9728, 9728 (2016).

2016 (1)

O. Shatrovoy, L. Rishøj, and S. Ramachandran, “Simultaneous mode and nonlinear-frequency conversion of HOMs,” Proc. SPIE 9728, 9728 (2016).

2015 (1)

2014 (1)

2013 (2)

E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
[Crossref]

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion,” Opt. Express 21(13), 15826–15833 (2013).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

2008 (2)

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

2007 (3)

2006 (2)

2005 (2)

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

1998 (1)

1994 (1)

Akyildiz, I. F.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Avicola, K.

Barlow, S.

Bateman, S. A.

Bello-Doua, R.

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Bissinger, H. D.

Boullet, J.

Bowers, M. S.

E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
[Crossref]

Brase, J. M.

Broeng, J.

Bufetov, I. A.

Cazaux, M.

Chen, V. W.

Chen, Y.

Cormier, E.

Demas, J.

Desmarchelier, R.

Dianov, E. M.

Dimarcello, F. V.

Dong, W.

Dronov, A. G.

Dubrasquet, R.

Duff, J.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Friedman, H. W.

Gapontsev, V. P.

Gavel, D. T.

George, A. K.

Georgiev, D.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[Crossref] [PubMed]

Hales, J. M.

Hanna, D. C.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Haske, W.

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Honea, E.

E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
[Crossref]

Horton, J. A.

Kelleher, E. J. R.

Kiefer, R.

Knight, J. C.

A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31(10), 1388–1390 (2006).
[Crossref] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Kudlinski, A.

Kurkov, A. S.

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

Lavoute, L.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Lyngsø, J. K.

Marder, S. R.

Maruyama, H.

Max, C. E.

McKinstrie, C. J.

Mead, R.

E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
[Crossref]

Médina, C.

Medvedkov, O. I.

Melkumov, M. A.

Melodia, T.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Minelly, J. D.

Monberg, E.

Morris, J. R.

Mosley, P. J.

Murray, R. T.

Mussot, A.

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[Crossref] [PubMed]

Nilsson, J.

Olausson, C. B.

Olivier, S. S.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Ott, J. R.

Paschotta, R.

Perry, J. W.

Pompili, D.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Popov, S. V.

Presta, R. W.

Ramachandran, S.

Rapp, D. A.

Rishøj, L.

O. Shatrovoy, L. Rishøj, and S. Ramachandran, “Simultaneous mode and nonlinear-frequency conversion of HOMs,” Proc. SPIE 9728, 9728 (2016).

J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23(22), 28531–28545 (2015).
[Crossref] [PubMed]

Rottwitt, K.

Rulkov, A. B.

Russell, P. S. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Saby, J.

Salin, F.

Salmon, J. T.

Savage-Leuchs, M.

E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
[Crossref]

Shatrovoy, O.

O. Shatrovoy, L. Rishøj, and S. Ramachandran, “Simultaneous mode and nonlinear-frequency conversion of HOMs,” Proc. SPIE 9728, 9728 (2016).

Shirakawa, A.

Shubin, A. V.

Steffensen, H.

Steinvurzel, P.

Tai, B.

Taylor, J. R.

Traynor, N.

Tropper, A. C.

Ueda, K.

Vyatkin, M. Y.

Wadsworth, W. J.

P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express 19(25), 25337–25345 (2011).
[Crossref] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

Waltjen, K. E.

Wang, A.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Wisk, P.

Yan, L.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[Crossref] [PubMed]

Yilmaz, T.

E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
[Crossref]

Zaouter, Y.

Ad Hoc Netw. (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Laser Phys. Lett. (1)

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

Opt. Express (8)

J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High power ytterbium-doped rod-type three-level photonic crystal fiber laser,” Opt. Express 16(22), 17891–17902 (2008).
[Crossref] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[Crossref] [PubMed]

H. Steffensen, J. R. Ott, K. Rottwitt, and C. J. McKinstrie, “Full and semi-analytic analyses of two-pump parametric amplification with pump depletion,” Opt. Express 19(7), 6648–6656 (2011).
[Crossref] [PubMed]

P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express 19(25), 25337–25345 (2011).
[Crossref] [PubMed]

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion,” Opt. Express 21(13), 15826–15833 (2013).
[Crossref] [PubMed]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref] [PubMed]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[Crossref] [PubMed]

J. Demas, L. Rishøj, and S. Ramachandran, “Free-space beam shaping for precise control and conversion of modes in optical fiber,” Opt. Express 23(22), 28531–28545 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. SPIE (2)

O. Shatrovoy, L. Rishøj, and S. Ramachandran, “Simultaneous mode and nonlinear-frequency conversion of HOMs,” Proc. SPIE 9728, 9728 (2016).

E. Honea, M. Savage-Leuchs, M. S. Bowers, T. Yilmaz, and R. Mead, “Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser,” Proc. SPIE 9728, 860111 (2013).
[Crossref]

Other (1)

J. Kim, P. Dupriez, D. B. S. Soh, J. K. Sahu, J. Nilsson, and D. Payne, “Nd:Al-doped depressed clad hollow fiber laser at 930nm,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper MC5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Setup schematic; QWP = quarter-wave plate, HWP = half-wave plate, BPF = bandpass filter, PBS = polarizing beam splitter, SLM = spatial light modulator; (b) Pump spectrum, measured prior to SLM1; (c) Pump pulse temporal profile, measured prior to SLM1.
Fig. 2
Fig. 2 (a) Facet image and (b) measured refractive index profile of FUT for FOPA source A; (c) Simulated dispersion for the LP0,7 mode of FUT; dashed vertical line designates pump wavelength; (d) Simulated Aeff for the LP0,7 mode of FUT with simulated mode image inset; (e) Simulated phase-matching for LP0,7 pumping at 1064 nm; (f) Simulated small signal gain for LP0,7 pumping of a 1.5-m FUT at 1064 nm vs. pump peak powers ranging from 5 to 40 kW.
Fig. 3
Fig. 3 (a) Seed spectrum and (b) output spectra for FOPA source A; spectrally filtered mode images for the anti-Stokes, pump, and Stokes waves are shown inset – all in LP0,7 as expected.
Fig. 4
Fig. 4 (a) Pump pulse temporal profiles with (blue) and without (red) the seed; Measured anti-Stokes (b) and Stokes (c) pulse with 64-point running average.
Fig. 5
Fig. 5 (a) Facet image and (b) measured refractive index profile of FUT for FOPA source B; (c) Simulated dispersion for the LP0,6 mode of FUT; dashed vertical line designates pump wavelength; (d) Simulated Aeff for the LP0,6 mode of FUT with simulated mode image inset; (e) Simulated phase-matching for LP0,6 pumping at 1064 nm; (f) Simulated small signal gain for LP0,6 pumping of a 3-m FUT at 1064 nm vs. pump peak powers ranging from 5 to 40 kW.
Fig. 6
Fig. 6 (a) Seed spectrum for FOPA source B; (b) Output spectra; spectrally filtered mode images for the anti-Stokes, pump, and Stokes waves are shown inset – all in LP0,6 as expected.
Fig. 7
Fig. 7 Measured anti-Stokes (a) and Stokes (b) pulses with 64-point running average.

Metrics