Abstract

The project of wielding laser light as a versatile tool for sculpting branched Ag@Au bimetallic nanocrystals with mean size of ~50 nm has been developed in this work. The moderate overgrowth of Ag species with negligible damage effect on the branched Ag@Au nanostructures was achieved by laser-induced photo-oxidation. The final Ag@Au nanodendrites exhibit superior surface enhanced Raman scattering (SERS) activities with an enhancement factor up to ~1011 and a detection limit as low as ~10−14 M. The pronounced feature should be attributed to the noticeable small-sized branches (<10 nm) and unique pronounced inter-metallic synergies. Our results have a promising potential for developing SERS-based ultrasensitive probes in biomedical application.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlled synthesis of hollow Ag@Au nano-urchins with unique synergistic effects for ultrasensitive surface-enhanced Raman spectroscopy

Hua Zhang, Linlin Xu, Yue Tian, Ming Chen, Xiangdong Liu, and Feng Chen
Opt. Express 25(23) 29389-29400 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [Crossref] [PubMed]
  2. L. F. Zhang, S. L. Zhong, and A. W. Xu, “Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement,” Angew. Chem. Int. Ed. Engl. 52(2), 645–649 (2013).
    [Crossref] [PubMed]
  3. S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
    [Crossref] [PubMed]
  4. J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
    [Crossref] [PubMed]
  5. Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
    [Crossref] [PubMed]
  6. J. Xie, J. Y. Lee, and D. I. C. Wang, “Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution,” Chem. Mater. 19(11), 2823–2830 (2007).
    [Crossref]
  7. Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
    [Crossref]
  8. Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2013).
    [Crossref]
  9. D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
    [Crossref] [PubMed]
  10. A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
    [Crossref] [PubMed]
  11. T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, “Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate,” RSC Adv. 4(8), 3929–3933 (2014).
  12. Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
    [Crossref]
  13. Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).
  14. R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
    [Crossref] [PubMed]
  15. M. Grzelczak and L. M. Liz-Marzán, “The relevance of light in the formation of colloidal metal nanoparticles,” Chem. Soc. Rev. 43(7), 2089–2097 (2014).
    [Crossref] [PubMed]
  16. J. C. Scaiano, K. G. Stamplecoskie, and G. L. Hallett-Tapley, “Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer,” Chem. Commun. (Camb.) 48(40), 4798–4808 (2012).
    [Crossref] [PubMed]
  17. M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Adv. 6(12), 9549–9553 (2016).
  18. H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
    [Crossref]
  19. D. Wang, H. Zhang, L. Li, M. Chen, and X. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
    [Crossref]
  20. S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
    [Crossref] [PubMed]
  21. Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).
  22. Z. Yan, R. Bao, and D. B. Chrisey, “Generation of Ag2O micro-/nanostructures by pulsed excimer laser ablation of Ag in aqueous solutions of polysorbate 80,” Langmuir 27(2), 851–855 (2011).
    [Crossref] [PubMed]
  23. L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
    [Crossref]
  24. H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
    [Crossref] [PubMed]
  25. Z. Yan, R. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4), 205–207 (2010).
    [Crossref]
  26. Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
    [Crossref] [PubMed]
  27. X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
    [Crossref]
  28. M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
    [Crossref] [PubMed]
  29. L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
    [Crossref]
  30. C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
    [Crossref] [PubMed]
  31. Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
    [Crossref] [PubMed]

2016 (11)

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref] [PubMed]

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Adv. 6(12), 9549–9553 (2016).

H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
[Crossref]

D. Wang, H. Zhang, L. Li, M. Chen, and X. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

2015 (4)

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

2014 (5)

S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
[Crossref] [PubMed]

T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, “Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate,” RSC Adv. 4(8), 3929–3933 (2014).

S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
[Crossref] [PubMed]

M. Grzelczak and L. M. Liz-Marzán, “The relevance of light in the formation of colloidal metal nanoparticles,” Chem. Soc. Rev. 43(7), 2089–2097 (2014).
[Crossref] [PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

2013 (3)

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

L. F. Zhang, S. L. Zhong, and A. W. Xu, “Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement,” Angew. Chem. Int. Ed. Engl. 52(2), 645–649 (2013).
[Crossref] [PubMed]

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2013).
[Crossref]

2012 (2)

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

J. C. Scaiano, K. G. Stamplecoskie, and G. L. Hallett-Tapley, “Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer,” Chem. Commun. (Camb.) 48(40), 4798–4808 (2012).
[Crossref] [PubMed]

2011 (1)

Z. Yan, R. Bao, and D. B. Chrisey, “Generation of Ag2O micro-/nanostructures by pulsed excimer laser ablation of Ag in aqueous solutions of polysorbate 80,” Langmuir 27(2), 851–855 (2011).
[Crossref] [PubMed]

2010 (1)

Z. Yan, R. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4), 205–207 (2010).
[Crossref]

2008 (1)

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

2007 (2)

J. Xie, J. Y. Lee, and D. I. C. Wang, “Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution,” Chem. Mater. 19(11), 2823–2830 (2007).
[Crossref]

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

2003 (1)

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Alves, R. S.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Assaf, J. M.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Balzer, R.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Bao, R.

Z. Yan, R. Bao, and D. B. Chrisey, “Generation of Ag2O micro-/nanostructures by pulsed excimer laser ablation of Ag in aqueous solutions of polysorbate 80,” Langmuir 27(2), 851–855 (2011).
[Crossref] [PubMed]

Z. Yan, R. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4), 205–207 (2010).
[Crossref]

Barrow, C. J.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Cai, W.

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

Camargo, P. H. C.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Cao, B.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

Cao, Q.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Charles Cao, Y.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Che, R.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Chen, M.

Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Adv. 6(12), 9549–9553 (2016).

D. Wang, H. Zhang, L. Li, M. Chen, and X. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
[Crossref]

S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
[Crossref] [PubMed]

Chen, M. H.

Chen, Q.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

Chen, Y. C.

Cheng, L.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Cheng, Y. F.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Chrisey, D. B.

Z. Yan, R. Bao, and D. B. Chrisey, “Generation of Ag2O micro-/nanostructures by pulsed excimer laser ablation of Ag in aqueous solutions of polysorbate 80,” Langmuir 27(2), 851–855 (2011).
[Crossref] [PubMed]

Z. Yan, R. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4), 205–207 (2010).
[Crossref]

Chuang, C. J.

Chung, H.

T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, “Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate,” RSC Adv. 4(8), 3929–3933 (2014).

da Silva, A. G. M.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

da Silva, A. H. M.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

de Freitas, I. C.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Diciaccio, B.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Ding, W.

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

Duchene, J. S.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Fajardo, H. V.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Fang, J.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Fang, Z.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Feng, Y.

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2013).
[Crossref]

Fu, S. Y.

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Gong, H.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

Grzelczak, M.

M. Grzelczak and L. M. Liz-Marzán, “The relevance of light in the formation of colloidal metal nanoparticles,” Chem. Soc. Rev. 43(7), 2089–2097 (2014).
[Crossref] [PubMed]

Guo, W.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Haigh, S. J.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Hallett-Tapley, G. L.

J. C. Scaiano, K. G. Stamplecoskie, and G. L. Hallett-Tapley, “Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer,” Chem. Commun. (Camb.) 48(40), 4798–4808 (2012).
[Crossref] [PubMed]

Hao, E.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

He, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Hsu, Y. K.

Hu, X.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

Huan, T. N.

T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, “Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate,” RSC Adv. 4(8), 3929–3933 (2014).

Huang, L.

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

Huo, Y.

Jia, X.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Jiang, S.

Jin, R.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Johnston-Peck, A. C.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Kim, S.

T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, “Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate,” RSC Adv. 4(8), 3929–3933 (2014).

Lee, J. Y.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

J. Xie, J. Y. Lee, and D. I. C. Wang, “Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution,” Chem. Mater. 19(11), 2823–2830 (2007).
[Crossref]

Lewis, E. A.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Li, C.

Li, D.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Li, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Li, J.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Li, L.

Li, M.

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

Li, P.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Li, Q.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Li, S.

Li, Y.

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

Li, Z.

Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref] [PubMed]

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

Li, Z. Y.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Liang, C.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Lin, Y. G.

Lin, Z.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Liu, H.

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2013).
[Crossref]

Liu, J.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Liu, M.

Liu, P.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

Liu, Q.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Liu, X.

Liu, X. D.

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Adv. 6(12), 9549–9553 (2016).

Liz-Marzán, L. M.

M. Grzelczak and L. M. Liz-Marzán, “The relevance of light in the formation of colloidal metal nanoparticles,” Chem. Soc. Rev. 43(7), 2089–2097 (2014).
[Crossref] [PubMed]

Ma, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Ma, Q.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Man, B.

Meng, M.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Métraux, G. S.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Mirkin, C. A.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Oliveira, D. C.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Probst, L. F. D.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Qian, K.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Qiu, J.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Rodrigues, T. S.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Rong, Z.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Scaiano, J. C.

J. C. Scaiano, K. G. Stamplecoskie, and G. L. Hallett-Tapley, “Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer,” Chem. Commun. (Camb.) 48(40), 4798–4808 (2012).
[Crossref] [PubMed]

Schatz, G. C.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Sheng, Y.

Shi, L.

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Slater, T. J. A.

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Song, Y.

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Stamplecoskie, K. G.

J. C. Scaiano, K. G. Stamplecoskie, and G. L. Hallett-Tapley, “Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer,” Chem. Commun. (Camb.) 48(40), 4798–4808 (2012).
[Crossref] [PubMed]

Su, D.

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Su, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Tao, X.

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

Tuong, P. V.

T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, “Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate,” RSC Adv. 4(8), 3929–3933 (2014).

Wang, A.

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Wang, C.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Wang, D.

Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

D. Wang, H. Zhang, L. Li, M. Chen, and X. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
[Crossref]

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

Wang, D. I. C.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

J. Xie, J. Y. Lee, and D. I. C. Wang, “Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution,” Chem. Mater. 19(11), 2823–2830 (2007).
[Crossref]

Wang, D. M.

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Adv. 6(12), 9549–9553 (2016).

Wang, H.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Wang, J.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Wang, M.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Wang, S.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Wang, X.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Wang, Y.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

Wang, Y. C.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Wang, Z.

Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).

Wang, Z. W.

Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).

Wu, X.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Xia, H.

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

Xiahou, Y.

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

Xiao, R.

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Xie, J.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

J. Xie, J. Y. Lee, and D. I. C. Wang, “Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution,” Chem. Mater. 19(11), 2823–2830 (2007).
[Crossref]

Xu, A. W.

L. F. Zhang, S. L. Zhong, and A. W. Xu, “Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement,” Angew. Chem. Int. Ed. Engl. 52(2), 645–649 (2013).
[Crossref] [PubMed]

Xu, L.

H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
[Crossref]

Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).

Yan, J.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Yan, Z.

Z. Yan, R. Bao, and D. B. Chrisey, “Generation of Ag2O micro-/nanostructures by pulsed excimer laser ablation of Ag in aqueous solutions of polysorbate 80,” Langmuir 27(2), 851–855 (2011).
[Crossref] [PubMed]

Z. Yan, R. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4), 205–207 (2010).
[Crossref]

Yang, C.

Yang, G.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yang, J.

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2013).
[Crossref]

Yang, S.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

Yang, W.

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

You, B.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

You, H.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yuan, K.

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

Zeng, J.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Zhai, Y.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Zhang, B.

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Zhang, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Z. Li, S. Jiang, Y. Huo, M. Liu, C. Yang, C. Zhang, X. Liu, Y. Sheng, C. Li, and B. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zhang, L. F.

L. F. Zhang, S. L. Zhong, and A. W. Xu, “Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement,” Angew. Chem. Int. Ed. Engl. 52(2), 645–649 (2013).
[Crossref] [PubMed]

Zhang, P.

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

Zhang, Q.

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Zhang, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

Zhang, T.

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Zhao, E. W.

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Zheng, S.

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

Zheng, Z.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Zhong, S. L.

L. F. Zhang, S. L. Zhong, and A. W. Xu, “Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement,” Angew. Chem. Int. Ed. Engl. 52(2), 645–649 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

A. G. M. da Silva, T. S. Rodrigues, T. J. A. Slater, E. A. Lewis, R. S. Alves, H. V. Fajardo, R. Balzer, A. H. M. da Silva, I. C. de Freitas, D. C. Oliveira, J. M. Assaf, L. F. D. Probst, S. J. Haigh, and P. H. C. Camargo, “Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings,” ACS Appl. Mater. Interfaces 7(46), 25624–25632 (2015).
[Crossref] [PubMed]

Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y. F. Cheng, Q. Li, M. Wang, and R. Che, “Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring,” ACS Appl. Mater. Interfaces 7(33), 18491–18500 (2015).
[Crossref] [PubMed]

ACS Nano (2)

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2(12), 2473–2480 (2008).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. F. Zhang, S. L. Zhong, and A. W. Xu, “Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement,” Angew. Chem. Int. Ed. Engl. 52(2), 645–649 (2013).
[Crossref] [PubMed]

ARSC Adv. (1)

Z. Wang, H. Zhang, L. Xu, Z. W. Wang, D. Wang, X. Liu, and M. Chen, “Laser-induced fabrication of highly branched Au@TiO2 nano-dendrites with excellent near-infrared absorption properties,” ARSC Adv. 6(86), 83337–83342 (2016).

Chem. Commun. (Camb.) (2)

D. Li, J. Liu, H. Wang, C. J. Barrow, and W. Yang, “Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy,” Chem. Commun. (Camb.) 52(73), 10968–10971 (2016).
[Crossref] [PubMed]

J. C. Scaiano, K. G. Stamplecoskie, and G. L. Hallett-Tapley, “Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer,” Chem. Commun. (Camb.) 48(40), 4798–4808 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

J. Xie, J. Y. Lee, and D. I. C. Wang, “Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution,” Chem. Mater. 19(11), 2823–2830 (2007).
[Crossref]

Chem. Phys. Lett. (1)

Z. Yan, R. Bao, and D. B. Chrisey, “Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid,” Chem. Phys. Lett. 497(4), 205–207 (2010).
[Crossref]

Chem. Soc. Rev. (1)

M. Grzelczak and L. M. Liz-Marzán, “The relevance of light in the formation of colloidal metal nanoparticles,” Chem. Soc. Rev. 43(7), 2089–2097 (2014).
[Crossref] [PubMed]

CrystEngComm (1)

Y. Xiahou, Y. Li, P. Zhang, L. Huang, D. Wang, and H. Xia, “Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction,” CrystEngComm 18(37), 7154–7162 (2016).
[Crossref]

J. Mater. Chem. (1)

X. Hu, H. Gong, Y. Wang, Q. Chen, J. Zhang, S. Zheng, S. Yang, and B. Cao, “Laser-induced reshaping of particles aiming at energy-saving applications,” J. Mater. Chem. 22(31), 15947–15952 (2012).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (3)

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Y. Li, W. Ding, M. Li, H. Xia, D. Wang, and X. Tao, “Synthesis of core-shell Au-Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles,” J. Mater. Chem. A Mater. Energy Sustain. 3(1), 368–376 (2015).
[Crossref]

Y. Feng, H. Liu, and J. Yang, “Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 6130–6137 (2013).
[Crossref]

J. Phys. Chem. B (1)

H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, “Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions,” J. Phys. Chem. B 111(51), 14311–14317 (2007).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, and Y. Song, “One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity,” J. Phys. Chem. C 117(24), 12526–12536 (2013).
[Crossref]

Langmuir (1)

Z. Yan, R. Bao, and D. B. Chrisey, “Generation of Ag2O micro-/nanostructures by pulsed excimer laser ablation of Ag in aqueous solutions of polysorbate 80,” Langmuir 27(2), 851–855 (2011).
[Crossref] [PubMed]

Nano Lett. (2)

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[Crossref] [PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[Crossref] [PubMed]

Nanoscale (1)

C. Wang, J. Wang, P. Li, Z. Rong, X. Jia, Q. Ma, R. Xiao, and S. Wang, “Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates,” Nanoscale 8(47), 19816–19828 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Zhai, J. S. Duchene, Y. C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. Diciaccio, K. Qian, and E. W. Zhao, “Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis,” Nat. Mater. 15(8), 889 (2016).

Nature (1)

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (2)

RSC Adv. (2)

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Adv. 6(12), 9549–9553 (2016).

T. N. Huan, S. Kim, P. V. Tuong, and H. Chung, “Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate,” RSC Adv. 4(8), 3929–3933 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic diagram of the whole procedures for synthesizing the Ag@Au nanoparticles, the highly branched Ag@Au nanodendrites and then the multi-branched Ag@Au nanodendrites, respectively.
Fig. 2
Fig. 2 The typical (a) low- and (b1) enlarged TEM images of Ag@Au nano-particles. The inset in (a) is the typical TEM image of individual Ag@Au nano-particle and the corresponding elemental mapping images. (b2-b5) The TEM images of the branched Ag@Au nanodendrites by adding HAuCl4 with 50, 90, 130 and 170 μL, respectively. (c-d) The typical morphologies of the highly-branched Ag@Au nanodendrites by using 210 μL HAuCl4. The bottom pictures in (d) show the corresponding elemental mapping images.
Fig. 3
Fig. 3 The UV-visible absorption spectra of Ag@Au nanodendrites (A-J) by adding HAuCl4 with amount increasing range from 50~210 μL.
Fig. 4
Fig. 4 (a-b) The typical enlarged TEM image of individual multi-branched Ag@Au nanodendrites after 3 h laser irradiation. The below pictures show the corresponding elemental mapping images.
Fig. 5
Fig. 5 (a) The UV-visible absorption spectra of Ag@Au nanodendrites obtained by laser irradiation for irradiation time varied from 0 to 3 h. (b) The curve of the Ag concentration in Ag@Au nanodendrites versus laser irradiation time. (c) The XRD patterns of the Ag@Au nanodendrites before and after laser irradiation for 3 h. (d) The representative HRTEM image of the multi-branched Ag@Au nanodendrites after laser irradiation for 3 h. The inset shows the result of the SAED.
Fig. 6
Fig. 6 (a) The SERS spectra of 4-ATP (1 M), 4-ATP (10−10 M) on different substrates. A: 4-ATP (1 M) on silicon substrate without any Ag@Au nanomaterials, B: Ag@Au nanoparticles-based substrate, C-G: Ag@Au nanodendrites obtained by laser irradiation for different time (0, 45, 90, 135, 180 min), respectively. (b) Based on the different Ag@Au nanodendrites, the variation of SERS intensity at 1590 cm−1 versus the irradiation time. (c) The variation of SERS intensity at 1590 cm−1 versus 550 different points on the substrate of final multi-branched Ag@Au nanodendrites. The inset shows the typical SEM image. (d) SERS spectra of 4-ATP with various concentrations (10−11~10−14 M) absorbed on the substrate of final multi-branchced Ag@Au nanodendrites.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E F = ( I S E R S / N S E R S ) / ( I B U L K / N B U L K )

Metrics