Abstract

In this article, we introduce a new optical energy focusing structure consisting of a circular dielectric Bragg nanocavity and a circular metallic plasmonic lens. Via the hybridization of Bragg cavity modes and surface plasmon modes, optical energy is highly confined in the central region of the Bragg nanocavity under linearly polarized illumination. When either a bowtie nano-antenna (BNA) or a magnetic resonator (MR) is placed on this focusing structure, the energy can be high-efficiently coupled and focused into the BNA or MR. Simulations show that the electric field enhancement (|E|/|E0|) in the BNA and magnetic field enhancement (|H|/|H0|) in the MR can be more than 3000 and 200, respectively. This proposed hybrid dielectric-metallic structure opens a new avenue in energy focusing and transferring and provides opportunities for various applications, including single-molecule SERS, optical trapping, photolithography, fluorescent microscopy, magnetic sensors, etc.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale

Mathieu Mivelle, Pierre Viktorovitch, Fadi I. Baida, Ali El Eter, Zhihua Xie, Than-Phong Vo, Elie Atie, Geoffrey W. Burr, Dusan Nedeljkovic, Jean-Yves Rauch, Ségolène Callard, and Thierry Grosjean
Opt. Express 22(12) 15075-15087 (2014)

Huge light-enhancement by coupling a bowtie nano-antenna’s plasmonic resonance to a photonic crystal mode

Ali El Eter, Thierry Grosjean, Pierre Viktorovitch, Xavier Letartre, Taha Benyattou, and Fadi I. Baida
Opt. Express 22(12) 14464-14472 (2014)

Plasmonic focusing with a coaxial structure illuminated by radially polarized light

Avner Yanai and Uriel Levy
Opt. Express 17(2) 924-932 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  3. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  4. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  5. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
    [Crossref] [PubMed]
  6. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
    [Crossref]
  7. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
    [Crossref] [PubMed]
  8. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [Crossref] [PubMed]
  9. V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
    [Crossref] [PubMed]
  10. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
    [Crossref] [PubMed]
  11. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  12. J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
    [Crossref]
  13. M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in one-dimensional dielectric nanorod arrays: field-induced fluorescence enhancement,” Opt. Lett. 32(18), 2762–2764 (2007).
    [Crossref] [PubMed]
  14. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
    [Crossref]
  15. Y. Liu, S. Wang, Y.-S. Park, X. Yin, and X. Zhang, “Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity,” Opt. Express 18(24), 25029–25034 (2010).
    [Crossref] [PubMed]
  16. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
    [Crossref] [PubMed]
  17. S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
    [Crossref]
  18. T. L. Liu, K. J. Russell, S. Cui, and E. L. Hu, “Two-dimensional hybrid photonic/plasmonic crystal cavities,” Opt. Express 22(7), 8219–8225 (2014).
    [Crossref] [PubMed]
  19. N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
    [Crossref]
  20. T. R. Lin, C. H. Lin, and J. C. Hsu, “Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves,” Sci. Rep. 5(1), 13782 (2015).
    [Crossref] [PubMed]
  21. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
    [Crossref] [PubMed]
  22. Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
    [Crossref]
  23. R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40(8), 1659–1662 (2015).
    [Crossref] [PubMed]
  24. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
    [Crossref]
  25. J. Scheuer, “Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination,” J. Opt. Soc. Am. B 24(9), 2178–2184 (2007).
    [Crossref]
  26. W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
    [Crossref] [PubMed]
  27. R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
    [Crossref] [PubMed]
  28. N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
    [Crossref] [PubMed]
  29. C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO2-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
    [Crossref] [PubMed]
  30. A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a Bowtie Nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
    [Crossref] [PubMed]
  31. M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean, “Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale,” Opt. Express 22(12), 15075–15087 (2014).
    [Crossref] [PubMed]
  32. W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
    [Crossref]
  33. B. Scheuer, W. M. J. Green, and A. Yariv, “Annular Bragg resonators: beyond the limits of total internal reflection,” Photon. Spectra 39(5), 64 (2005).
  34. O. Weiss and J. Scheuer, “Emission of cylindrical and elliptical vector beams from radial Bragg Lasers,” Appl. Phys. Lett. 97(25), 251108 (2010).
    [Crossref]
  35. E. Ben-Bassat and J. Scheuer, “Optimal design of radial Bragg cavities and lasers,” Opt. Lett. 40(13), 3069–3072 (2015).
    [Crossref] [PubMed]
  36. J. Qi, T. Kaiser, A. E. Klein, M. Steinert, T. Pertsch, F. Lederer, and C. Rockstuhl, “Enhancing resonances of optical nanoantennas by circular gratings,” Opt. Express 23(11), 14583–14595 (2015).
    [Crossref] [PubMed]
  37. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).
  38. Y. Bao, Y. Hou, and Z. Wang, “Huge electric field enhancement of magnetic resonator integrated with multiple concentric rings,” Plasmonics 10(2), 251–256 (2015).
    [Crossref]
  39. G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
    [Crossref] [PubMed]
  40. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  41. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
    [Crossref] [PubMed]
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  43. A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008).
    [Crossref] [PubMed]

2016 (1)

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

2015 (12)

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
[Crossref]

T. R. Lin, C. H. Lin, and J. C. Hsu, “Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves,” Sci. Rep. 5(1), 13782 (2015).
[Crossref] [PubMed]

R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40(8), 1659–1662 (2015).
[Crossref] [PubMed]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

E. Ben-Bassat and J. Scheuer, “Optimal design of radial Bragg cavities and lasers,” Opt. Lett. 40(13), 3069–3072 (2015).
[Crossref] [PubMed]

J. Qi, T. Kaiser, A. E. Klein, M. Steinert, T. Pertsch, F. Lederer, and C. Rockstuhl, “Enhancing resonances of optical nanoantennas by circular gratings,” Opt. Express 23(11), 14583–14595 (2015).
[Crossref] [PubMed]

Y. Bao, Y. Hou, and Z. Wang, “Huge electric field enhancement of magnetic resonator integrated with multiple concentric rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

2012 (3)

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO2-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

2011 (3)

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Liu, S. Wang, Y.-S. Park, X. Yin, and X. Zhang, “Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity,” Opt. Express 18(24), 25029–25034 (2010).
[Crossref] [PubMed]

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[Crossref] [PubMed]

O. Weiss and J. Scheuer, “Emission of cylindrical and elliptical vector beams from radial Bragg Lasers,” Appl. Phys. Lett. 97(25), 251108 (2010).
[Crossref]

2009 (1)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

2005 (4)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[Crossref]

B. Scheuer, W. M. J. Green, and A. Yariv, “Annular Bragg resonators: beyond the limits of total internal reflection,” Photon. Spectra 39(5), 64 (2005).

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

1999 (1)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).

Akimov, A. V.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Albaladejo, S.

Andryieuski, A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Antosiewicz, T. J.

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO2-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

Atie, E.

Awschalom, D.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Baida, F. I.

Bao, Y.

Y. Bao, Y. Hou, and Z. Wang, “Huge electric field enhancement of magnetic resonator integrated with multiple concentric rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Ben-Bassat, E.

Benyattou, T.

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Bonner, C. E.

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Bozhevolnyi, S. I.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Bracher, D.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Burr, G. W.

Bütün, S.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Callard, S.

Carminati, R.

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cinel, N. A.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Co, D. T.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Crozier, K. B.

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Cui, S.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

T. L. Liu, K. J. Russell, S. Cui, and E. L. Hu, “Two-dimensional hybrid photonic/plasmonic crystal cavities,” Opt. Express 22(7), 8219–8225 (2014).
[Crossref] [PubMed]

David, A.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

de Leon, N. P.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

El Eter, A.

Englund, D. E.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Ertas, G.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Eter, A. E.

Fang, Z.

Fischer, H.

Gao,

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Gjonaj, B.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Gondarenko, A.

Gong, Q.

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

Gramotnev, D. K.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[Crossref]

B. Scheuer, W. M. J. Green, and A. Yariv, “Annular Bragg resonators: beyond the limits of total internal reflection,” Photon. Spectra 39(5), 64 (2005).

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Grosjean, T.

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Harats, M. G.

N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
[Crossref]

He, S.

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Hou, Y.

Y. Bao, Y. Hou, and Z. Wang, “Huge electric field enhancement of magnetic resonator integrated with multiple concentric rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

Hsu, J. C.

T. R. Lin, C. H. Lin, and J. C. Hsu, “Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves,” Sci. Rep. 5(1), 13782 (2015).
[Crossref] [PubMed]

Hu, E. L.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

T. L. Liu, K. J. Russell, S. Cui, and E. L. Hu, “Two-dimensional hybrid photonic/plasmonic crystal cavities,” Opt. Express 22(7), 8219–8225 (2014).
[Crossref] [PubMed]

Hu, X.

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

Huang, S.

Huntington, M. D.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Hussain, R.

Ishikawa, A.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Ji, J.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Jiang, X.

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaiser, T.

Käll, M.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Kim, C. H.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Kivshar, Y. S.

Klein, A. E.

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Krauss, T. F.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Kruk, S. S.

Langhammer, C.

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO2-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

Laroche, M.

Lavrinenko, A. V.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Lederer, F.

Lee, J.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Letartre, X.

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Li, B.-B.

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

Li, X.

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Li, Y.

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

Lin, C. H.

T. R. Lin, C. H. Lin, and J. C. Hsu, “Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves,” Sci. Rep. 5(1), 13782 (2015).
[Crossref] [PubMed]

Lin, F.

Lin, T. R.

T. R. Lin, C. H. Lin, and J. C. Hsu, “Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves,” Sci. Rep. 5(1), 13782 (2015).
[Crossref] [PubMed]

Lipson, M.

A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008).
[Crossref] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Liu, Q.

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Liu, T.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Liu, T. L.

Liu, Y.

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Livneh, N.

N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
[Crossref]

Lukin, M. D.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Malureanu, R.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Martin, O. J. F.

Meng, Y.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Mivelle, M.

Nedeljkovic, D.

Neshev, D. N.

Noginov, M. A.

Noginova, N.

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Odom, T. W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Ohno, K.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Orenstein, M.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Ozbay, E.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Paltiel, Y.

N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
[Crossref]

Park, H.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Park, Y.-S.

Pertsch, T.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).

Qi, J.

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Radko, I. P.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Rapaport, R.

N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
[Crossref]

Rauch, J. Y.

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Rockstuhl, C.

Russell, K. J.

Sa, T.

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Sáenz, J. J.

Scheuer, B.

B. Scheuer, W. M. J. Green, and A. Yariv, “Annular Bragg resonators: beyond the limits of total internal reflection,” Photon. Spectra 39(5), 64 (2005).

Scheuer, J.

E. Ben-Bassat and J. Scheuer, “Optimal design of radial Bragg cavities and lasers,” Opt. Lett. 40(13), 3069–3072 (2015).
[Crossref] [PubMed]

O. Weiss and J. Scheuer, “Emission of cylindrical and elliptical vector beams from radial Bragg Lasers,” Appl. Phys. Lett. 97(25), 251108 (2010).
[Crossref]

J. Scheuer, “Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination,” J. Opt. Soc. Am. B 24(9), 2178–2184 (2007).
[Crossref]

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[Crossref]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Shegai, T.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Shields, B. J.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Song, W.

Spektor, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Staude, I.

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Steinert, M.

Suh, J. Y.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, L.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Verre, R.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Viktorovitch, P.

Vo, T. P.

Volkov, V. S.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Wadell, C.

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO2-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

Wang, D.

Wang, J.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Wang, S.

Wang, W.

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Wang, Y.

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Wang, Z.

Y. Bao, Y. Hou, and Z. Wang, “Huge electric field enhancement of magnetic resonator integrated with multiple concentric rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

Wasielewski, M. R.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Weiss, O.

O. Weiss and J. Scheuer, “Emission of cylindrical and elliptical vector beams from radial Bragg Lasers,” Appl. Phys. Lett. 97(25), 251108 (2010).
[Crossref]

Wu, X.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Xiao, Y.-F.

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

Xie, Z.

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Yang, T.

Yang, X.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Yang, Z. J.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[Crossref]

B. Scheuer, W. M. J. Green, and A. Yariv, “Annular Bragg resonators: beyond the limits of total internal reflection,” Photon. Spectra 39(5), 64 (2005).

Yin, X.

Yochelis, S.

N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
[Crossref]

Yu, C. L.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Zenin, V. A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Zhang, X.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Y. Liu, S. Wang, Y.-S. Park, X. Yin, and X. Zhang, “Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity,” Opt. Express 18(24), 25029–25034 (2010).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zhou, W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Zhu, G.

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

Zhu, X.

ACS Nano (1)

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

ACS Photonics (2)

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

N. Livneh, M. G. Harats, S. Yochelis, Y. Paltiel, and R. Rapaport, “Efficient collection of light from colloidal quantum dots with a hybrid metal–dielectric nanoantenna,” ACS Photonics 2(12), 1669–1674 (2015).
[Crossref]

Appl. Phys. Lett. (4)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[Crossref]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

O. Weiss and J. Scheuer, “Emission of cylindrical and elliptical vector beams from radial Bragg Lasers,” Appl. Phys. Lett. 97(25), 251108 (2010).
[Crossref]

IEEE Photonics J. (1)

W. Wang, Q. Liu, G. Zhu, X. Li, S. He, T. Sa, Gao, and Y. Wang, “Gao and Y. Wang, “Polarization-insensitive concentric circular grating filters featuring a couple of resonant peaks,” IEEE Photonics J. 7(5), 1–10 (2015).
[Crossref]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys. 43(3), 035402 (2010).
[Crossref]

Nano Lett. (8)

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO2-Pd nanoantennas,” Nano Lett. 12(9), 4784–4790 (2012).
[Crossref] [PubMed]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15(9), 5739–5743 (2015).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (9)

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[Crossref] [PubMed]

A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008).
[Crossref] [PubMed]

W. Song, Z. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[Crossref] [PubMed]

Y. Liu, S. Wang, Y.-S. Park, X. Yin, and X. Zhang, “Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity,” Opt. Express 18(24), 25029–25034 (2010).
[Crossref] [PubMed]

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
[Crossref] [PubMed]

T. L. Liu, K. J. Russell, S. Cui, and E. L. Hu, “Two-dimensional hybrid photonic/plasmonic crystal cavities,” Opt. Express 22(7), 8219–8225 (2014).
[Crossref] [PubMed]

A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a Bowtie Nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
[Crossref] [PubMed]

M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean, “Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale,” Opt. Express 22(12), 15075–15087 (2014).
[Crossref] [PubMed]

J. Qi, T. Kaiser, A. E. Klein, M. Steinert, T. Pertsch, F. Lederer, and C. Rockstuhl, “Enhancing resonances of optical nanoantennas by circular gratings,” Opt. Express 23(11), 14583–14595 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Photon. Spectra (1)

B. Scheuer, W. M. J. Green, and A. Yariv, “Annular Bragg resonators: beyond the limits of total internal reflection,” Photon. Spectra 39(5), 64 (2005).

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Plasmonics (2)

Y. Bao, Y. Hou, and Z. Wang, “Huge electric field enhancement of magnetic resonator integrated with multiple concentric rings,” Plasmonics 10(2), 251–256 (2015).
[Crossref]

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Sci. Rep. (1)

T. R. Lin, C. H. Lin, and J. C. Hsu, “Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves,” Sci. Rep. 5(1), 13782 (2015).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Small (1)

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic and (b) cross-sectional view of the hybrid energy focusing structure.
Fig. 2
Fig. 2 (a) The E-field and H-field of linearly polarized light incident on a Bragg nanocavity can be decomposed into azimuthal component Ea, Ha and radial component Er, Hr. (b) Schematic views of the isolated Bragg nanocavity (upper) and the isolated plasmonic lens (lower), respectively. Detector A1 is at the center of the upper surface of the isolated Bragg nanocavity, and Detector A2 is 10 nm above the right edge of the central Ag disk of the plasmonic lens. (c) The |E|/|E0| of Detector A1 of the isolated Bragg nanocavity for different periods of SiO2 rings and wavelengths. (d) The |E|/|E0| and |H|/|H0| of Detector A1 of the isolated Bragg nanocavity and the |E|/|E0| and |H|/|H0| (magnified 2 times) of Detector A2 of the isolated plasmonic lens as a function of wavelength. The periods of the SiO2 rings and Ag rings are P1 = 700 nm and P2 = 500 nm, respectively. (e), (f) The simulated |E|/|E0| and |H|/|H0| distributions of the xy-plane under linear polarization for the isolated Bragg nanocavity at a wavelength of 922 nm; the xy-plane is the upper surface of the Bragg nanocavity. (g), (h) The simulated |E|/|E0| and |H|/|H0| distributions of the xy-plane under linear polarization for the isolated plasmonic lens at a wavelength of 560 nm; the xy-plane is 10 nm above the plasmonic lens. The number of Ag rings of the plasmonic lens is N = 18. The white double-headed arrow represents the polarization direction of the linearly polarized incident light, polarized along the x-axis.
Fig. 3
Fig. 3 (a) Schematic view of the simplified energy focusing structure. (b) |E|/|E0| (black line) and corresponding resonant wavelength (blue line) of Detector B1 of the energy focusing structure as a function of the thickness of SiO2 spacer layer L, using a logarithmic scale (Log10). Detector B1 is at the center of the upper surface of the Bragg nanocavity. (c) |E|/|E0| of Detector B1 for different numbers of Ag rings and wavelengths when L is equal to 15nm. (d) |H|/|H0| of Detector B2 for different numbers of Ag rings and wavelengths when L is equal to 15nm. Detector B2 is 10 nm above the center of the upper surface of the plasmonic lens. The periods of the SiO2 rings and Ag rings are P1 = 700 nm and P2 = 500 nm.
Fig. 4
Fig. 4 (a), (c), (e) |E|/|E0| distributions and (b), (d), (f) |H|/|H0| distributions of the xy-plane, xz-plane and yz-plane of the optimized energy focusing structure at a wavelength of 850 nm. The xy-plane is the upper surface of the Bragg nanocavity, and the xz-plane and yz-plane cross the center of the Bragg nanocavity. The borders are highlighted by white dotted lines. The thickness L of the SiO2 spacer layer is L = 15 nm; the number of Ag rings of the plasmonic lens is N = 18; the total diameter of this energy focusing structure is about 20 μm.
Fig. 5
Fig. 5 (a) Schematic view of the BNA sitting directly at the center of the upper surface of the energy focusing structure. (b) |E|/|E0| detected at the center of the gap of the BNA for a isolated BNA and a BNA integrated with the optical energy focused structure. (c), (d) |E|/|E0| distributions of the xz-plane and xy-plane at a wavelength of 850 nm (left) and their corresponding enlarged electric field distributions of the BNA gap (right). The xz-plane and xy-plane both cross the center of the gap. The white dotted lines show the borders of different structures.
Fig. 6
Fig. 6 (a) Schematic view of the MR, which sits directly at the center of the upper surface of the energy focusing structure. (b) |H|/|H0|, detected at the center of the MR, for a isolated MR and an MR integrated with our optical energy focused structure. (c), (d) The |H|/|H0| distributions of the xz-plane and yz-plane at a wavelength of 850 nm. The xz-plane and yz-plane cross the center of the MR. The white dotted lines show the borders of different structures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V m = ε(r)|E(r)| 2 d r 3 max[ε(r)|E(r) | 2 ]

Metrics