Abstract

Microfluidic lenses are relevant optical components for sensing application in lab-on-a-chip devices, guaranteeing a robust alignment of the elements, a high level of compactness and tunable optical properties. In this work we describe an innovative integrated in-plane microfluidic lens. The device shows both an optimized shape capable of reducing spherical aberrations and periodically tunable optical properties. Indeed through the combination of the lens with a droplet generator module, we have been able to obtain an integrated optofluidic modulator capable of both on-demand on/off switching and periodic modulation of light. The device possesses a simple 3D geometry, which has been realized by exploiting the 3D capability of the femtosecond laser micromachining fabrication technique.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optofluidic lab-on-a-chip for rapid algae population screening

Allison Schaap, Yves Bellouard, and Thomas Rohrlack
Biomed. Opt. Express 2(3) 658-664 (2011)

Laser-written photonic crystal optofluidics for electrochromatography and spectroscopy on a chip

Moez Haque, Nicole S. Zacharia, Stephen Ho, and Peter R. Herman
Biomed. Opt. Express 4(8) 1472-1485 (2013)

Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining

Jiangxin Song, Jintian Lin, Jialei Tang, Yang Liao, Fei He, Zhaohui Wang, Lingling Qiao, Koji Sugioka, and Ya Cheng
Opt. Express 22(12) 14792-14802 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
    [Crossref]
  2. J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensor Actuat. B-Chem. 99, 615–622 (2004).
    [Crossref]
  3. Z. Wang, K. Sugioka, and K. Midorikawa, “Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys. A-Mater. 89, 951–955 (2007).
    [Crossref]
  4. N. T. Nguyen, ”Micro-optofluidic Lenses: A review,” Biomicrofluidics 4, 031501 (2010).
    [Crossref] [PubMed]
  5. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4, 97–105 (2008).
    [Crossref]
  6. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
    [Crossref] [PubMed]
  7. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, ”Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
    [Crossref] [PubMed]
  8. J. Godin, V. Lien, and Y. H. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89, 061106 (2006).
    [Crossref]
  9. S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8, 395–401 (2008).
    [Crossref] [PubMed]
  10. C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
    [Crossref]
  11. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
    [Crossref] [PubMed]
  12. J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
    [Crossref]
  13. X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
    [Crossref]
  14. X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
    [Crossref] [PubMed]
  15. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
    [Crossref] [PubMed]
  16. K. Wei, H. Huang, Q. Wang, and Y. Zhao, “Focus-tunable liquid lens with an aspherical membrane for improved central and peripheral resolutions at high diopters,” Opt. Express 24, 3929–3939 (2016).
    [Crossref] [PubMed]
  17. R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
    [Crossref]
  18. J. C. G. Lesurf, Information and Measurement, Chap. 16 (IOP Publishing Ltd., 2002).
  19. C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
    [Crossref]
  20. P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
    [Crossref] [PubMed]
  21. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  22. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5, 442–463 (2011).
    [Crossref]
  23. P. Paiè, F. Bragheri, R. Martinez Vazquez, and R. Osellame, “Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels,” Lab Chip 14, 1826–1833 (2014).
    [Crossref] [PubMed]
  24. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
    [Crossref] [PubMed]
  25. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
    [Crossref] [PubMed]
  26. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2, 26–46 (2008).
    [Crossref]
  27. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
    [Crossref] [PubMed]
  28. T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
    [Crossref] [PubMed]
  29. S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys. A-Mater. 106, 5–13 (2012).
    [Crossref]
  30. H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
    [Crossref] [PubMed]
  31. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8, 198–220 (2008).
    [Crossref] [PubMed]
  32. M. Joanicot and A. Ajdari, “Droplet control for microfluidics,” Science 309, 887–888 (2005).
    [Crossref] [PubMed]
  33. J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
    [Crossref] [PubMed]
  34. L. Yobas, S. Martens, W.L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6, 1073–1079 (2006).
    [Crossref] [PubMed]
  35. T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab Chip 2, 24–26 (2002).
    [Crossref]

2016 (2)

2015 (1)

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

2014 (2)

P. Paiè, F. Bragheri, R. Martinez Vazquez, and R. Osellame, “Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels,” Lab Chip 14, 1826–1833 (2014).
[Crossref] [PubMed]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys. A-Mater. 106, 5–13 (2012).
[Crossref]

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
[Crossref] [PubMed]

2011 (3)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5, 442–463 (2011).
[Crossref]

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
[Crossref]

2010 (4)

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
[Crossref]

N. T. Nguyen, ”Micro-optofluidic Lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[Crossref] [PubMed]

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, ”Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[Crossref] [PubMed]

2009 (3)

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref] [PubMed]

2008 (6)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2, 26–46 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8, 198–220 (2008).
[Crossref] [PubMed]

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8, 395–401 (2008).
[Crossref] [PubMed]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4, 97–105 (2008).
[Crossref]

2007 (3)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

Z. Wang, K. Sugioka, and K. Midorikawa, “Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys. A-Mater. 89, 951–955 (2007).
[Crossref]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[Crossref] [PubMed]

2006 (3)

J. Godin, V. Lien, and Y. H. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89, 061106 (2006).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

L. Yobas, S. Martens, W.L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6, 1073–1079 (2006).
[Crossref] [PubMed]

2005 (1)

M. Joanicot and A. Ajdari, “Droplet control for microfluidics,” Science 309, 887–888 (2005).
[Crossref] [PubMed]

2004 (1)

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensor Actuat. B-Chem. 99, 615–622 (2004).
[Crossref]

2002 (1)

T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab Chip 2, 24–26 (2002).
[Crossref]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Aitchison, J. S.

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys. A-Mater. 106, 5–13 (2012).
[Crossref]

Ajdari, A.

M. Joanicot and A. Ajdari, “Droplet control for microfluidics,” Science 309, 887–888 (2005).
[Crossref] [PubMed]

Asundi, A. K.

C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
[Crossref]

Bassi, A.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Bellini, N.

Besselink, G. A. J.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

Bragheri, F.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

P. Paiè, F. Bragheri, R. Martinez Vazquez, and R. Osellame, “Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels,” Lab Chip 14, 1826–1833 (2014).
[Crossref] [PubMed]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Cerullo, G.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5, 442–463 (2011).
[Crossref]

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref] [PubMed]

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Chau, F. S.

Chen, D.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Cheng, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Chiari, M.

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Cretich, M.

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Cristiani, I.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Di Carlo, D.

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

Di Tano, M.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Dongre, C.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Edd, J. F.

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

Fan, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Godin, J.

J. Godin, V. Lien, and Y. H. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89, 061106 (2006).
[Crossref]

He, F.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Herman, P. R.

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys. A-Mater. 106, 5–13 (2012).
[Crossref]

Higuchi, T.

T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab Chip 2, 24–26 (2002).
[Crossref]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2, 26–46 (2008).
[Crossref]

Ho, S.

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys. A-Mater. 106, 5–13 (2012).
[Crossref]

Hoekstra, H. J. W. M.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5, 442–463 (2011).
[Crossref]

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Huang, H.

K. Wei, H. Huang, Q. Wang, and Y. Zhao, “Focus-tunable liquid lens with an aspherical membrane for improved central and peripheral resolutions at high diopters,” Opt. Express 24, 3929–3939 (2016).
[Crossref] [PubMed]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

Huang, T. J.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[Crossref] [PubMed]

Humphry, K. J.

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

Hung, L. H.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8, 198–220 (2008).
[Crossref] [PubMed]

Irimia, D.

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Joanicot, M.

M. Joanicot and A. Ajdari, “Droplet control for microfluidics,” Science 309, 887–888 (2005).
[Crossref] [PubMed]

Juluri, B. K.

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[Crossref] [PubMed]

Köster, S.

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

Lapsley, M. I.

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

Lee, A. P.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8, 198–220 (2008).
[Crossref] [PubMed]

Lee, L. P.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensor Actuat. B-Chem. 99, 615–622 (2004).
[Crossref]

Lesurf, J. C. G.

J. C. G. Lesurf, Information and Measurement, Chap. 16 (IOP Publishing Ltd., 2002).

Leung, H. M.

Levy, U.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4, 97–105 (2008).
[Crossref]

Li, E.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Li, H.

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
[Crossref] [PubMed]

Liao, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Lien, V.

J. Godin, V. Lien, and Y. H. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89, 061106 (2006).
[Crossref]

Lin, R.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8, 198–220 (2008).
[Crossref] [PubMed]

Lin, S. C. S.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

Liu, C.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Lo, Y. H.

J. Godin, V. Lien, and Y. H. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89, 061106 (2006).
[Crossref]

Luo, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Luong, T. D.

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
[Crossref] [PubMed]

C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Mao, X.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[Crossref] [PubMed]

Martens, S.

L. Yobas, S. Martens, W.L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6, 1073–1079 (2006).
[Crossref] [PubMed]

Martinez Vazquez, R.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

P. Paiè, F. Bragheri, R. Martinez Vazquez, and R. Osellame, “Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels,” Lab Chip 14, 1826–1833 (2014).
[Crossref] [PubMed]

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Midorikawa, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Z. Wang, K. Sugioka, and K. Midorikawa, “Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys. A-Mater. 89, 951–955 (2007).
[Crossref]

Minzioni, P.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

Mondello, C.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Nava, G.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Nawaz, A. A.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
[Crossref]

Nguyen, N. T.

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
[Crossref] [PubMed]

C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
[Crossref]

N. T. Nguyen, ”Micro-optofluidic Lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[Crossref] [PubMed]

Nisisako, T.

T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab Chip 2, 24–26 (2002).
[Crossref]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Ong, W.L.

L. Yobas, S. Martens, W.L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6, 1073–1079 (2006).
[Crossref] [PubMed]

Osellame, R.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

P. Paiè, F. Bragheri, R. Martinez Vazquez, and R. Osellame, “Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels,” Lab Chip 14, 1826–1833 (2014).
[Crossref] [PubMed]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5, 442–463 (2011).
[Crossref]

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref] [PubMed]

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Paiè, P.

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref] [PubMed]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

P. Paiè, F. Bragheri, R. Martinez Vazquez, and R. Osellame, “Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels,” Lab Chip 14, 1826–1833 (2014).
[Crossref] [PubMed]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5, 442–463 (2011).
[Crossref]

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Ramponi, R.

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685–8695 (2009).
[Crossref] [PubMed]

Ranganathan, N.

L. Yobas, S. Martens, W.L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6, 1073–1079 (2006).
[Crossref] [PubMed]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Seo, J.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensor Actuat. B-Chem. 99, 615–622 (2004).
[Crossref]

Shamai, R.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4, 97–105 (2008).
[Crossref]

Shen, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Shi, J.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2, 26–46 (2008).
[Crossref]

Song, C.

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
[Crossref] [PubMed]

C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
[Crossref]

Song, J.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Stan, C. A.

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8, 395–401 (2008).
[Crossref] [PubMed]

Stratton, Z.

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

Stratton, Z. I.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
[Crossref]

Sugioka, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Z. Wang, K. Sugioka, and K. Midorikawa, “Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys. A-Mater. 89, 951–955 (2007).
[Crossref]

Tang, S. K.

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8, 395–401 (2008).
[Crossref] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2, 26–46 (2008).
[Crossref]

Teh, S. Y.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8, 198–220 (2008).
[Crossref] [PubMed]

Toner, M.

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

Torii, T.

T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab Chip 2, 24–26 (2002).
[Crossref]

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

van den Vlekkert, H.

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

van den Vlekkert, H. H.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

van Weeghel, R.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

van Weerd, J.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

Veglione, M.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Vishnubhatla, K. C.

Waldeisen, J. R.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[Crossref] [PubMed]

Wang, Q.

Wang, Z.

Z. Wang, K. Sugioka, and K. Midorikawa, “Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys. A-Mater. 89, 951–955 (2007).
[Crossref]

Wei, K.

Wei, X.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Weitz, D. A.

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

Whitesides, G. M.

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8, 395–401 (2008).
[Crossref] [PubMed]

Wong, T. N.

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
[Crossref] [PubMed]

Xu, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Yang, T.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Yap, Y. F.

C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
[Crossref]

Yobas, L.

L. Yobas, S. Martens, W.L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6, 1073–1079 (2006).
[Crossref] [PubMed]

Yu, H.

Zhao, Y.

Zhou, G.

Anal. Bioanal. Chem. (1)

R. Martinez Vazquez, R. Osellame, M. Cretich, M. Chiari, C. Dongre, H. J. W. M. Hoekstra, M. Pollnau, H. van den Vlekkert, R. Ramponi, and G. Cerullo, “Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides,” Anal. Bioanal. Chem. 393, 1209–1216 (2009).
[Crossref]

Appl. Phys. A-Mater. (2)

Z. Wang, K. Sugioka, and K. Midorikawa, “Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys. A-Mater. 89, 951–955 (2007).
[Crossref]

S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys. A-Mater. 106, 5–13 (2012).
[Crossref]

Appl. Phys. Lett. (1)

J. Godin, V. Lien, and Y. H. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89, 061106 (2006).
[Crossref]

Biomicrofluidics (2)

N. T. Nguyen, ”Micro-optofluidic Lenses: A review,” Biomicrofluidics 4, 031501 (2010).
[Crossref] [PubMed]

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4, 043007 (2010).
[Crossref]

Lab Chip (14)

X. Mao, S. C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, ”Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9, 2050–2058 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7, 1303–1308 (2007).
[Crossref] [PubMed]

C. Dongre, J. van Weerd, G. A. J. Besselink, R. Martinez Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11, 679–683 (2011).
[Crossref]

P. Paiè, F. Bragheri, A. Bassi, and R. Osellame, “Selective plane illumination microscopy on a chip,” Lab Chip 16, 1556–1560 (2016).
[Crossref] [PubMed]

S. K. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8, 395–401 (2008).
[Crossref] [PubMed]

H. Li, C. Song, T. D. Luong, N. T. Nguyen, and T. N. Wong, “An electrokinetically tunable optofluidic bi-concave lens,” Lab Chip 12, 3680–3687 (2012).
[Crossref] [PubMed]

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8, 198–220 (2008).
[Crossref] [PubMed]

P. Paiè, F. Bragheri, R. Martinez Vazquez, and R. Osellame, “Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels,” Lab Chip 14, 1826–1833 (2014).
[Crossref] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746–749 (2012).
[Crossref] [PubMed]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13, 1626–1631 (2013).
[Crossref] [PubMed]

J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8, 1262–1264 (2008).
[Crossref] [PubMed]

L. Yobas, S. Martens, W.L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6, 1073–1079 (2006).
[Crossref] [PubMed]

T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab Chip 2, 24–26 (2002).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15, 1262–1266 (2015).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5, 442–463 (2011).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2, 26–46 (2008).
[Crossref]

Microfluid. Nanofluid. (3)

C. Song, N. T. Nguyen, Y. F. Yap, T. D. Luong, and A. K. Asundi, “Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent,” Microfluid. Nanofluid. 10, 671–678 (2011).
[Crossref]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4, 97–105 (2008).
[Crossref]

J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid. 9, 313–318 (2010).
[Crossref]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106–114 (2007).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442, 551–554 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Science (1)

M. Joanicot and A. Ajdari, “Droplet control for microfluidics,” Science 309, 887–888 (2005).
[Crossref] [PubMed]

Sensor Actuat. B-Chem. (1)

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensor Actuat. B-Chem. 99, 615–622 (2004).
[Crossref]

Other (1)

J. C. G. Lesurf, Information and Measurement, Chap. 16 (IOP Publishing Ltd., 2002).

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (706 KB)      Dynamic switch on and off of the fluorescence signal when the lens is respectively filled with oil or red-colored water.
» Visualization 2: MP4 (866 KB)      Device characterization at different insertion pressures
» Visualization 3: MP4 (230 KB)      Oil droplets periodically flow in the lens producing a corresponding periodic modulation of the fluorescence signal excited in the sample channel.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic design of the device respectively viewed from top (a) and side (b). The diverging beam output from a fiber is focused in one dimension into the sample channel thanks to the presence of a cylindrical microlens with aspheric profile.

Fig. 2
Fig. 2

Schematic layout of the acylindrical lens, the first interface of the lens does not modify the beam propagation. The second interface instead is designed to focus all the beam rays to the same point.

Fig. 3
Fig. 3

Microscope images of the top view of the lens before (a) and after (b) the exposure to the acid solution. (c) Microscope images of the side view of the lens microchannel after the etching step. The scale bar, for all panels, is 100 μm.

Fig. 4
Fig. 4

Beam waist characterization. Panel (a) shows the acquired microscope image of the Rhodamine fluorescence, while panel (b) shows the correspondent waist analysis. The minimum waist retrieved for the beam focused by the acylindrical lens is about 6.2 μm.

Fig. 5
Fig. 5

Working principles of the device when either oil or water is filling the lens; water is colored in red to be easily distinguished from oil. In panel (a) the microlens is filled with oil and the beam is focused in the Rhodamine cuvette, switching on the correspondent fluorescence signal (b). In panel (c) red water is filling the lens; in this case the beam is not focused and no fluorescence signal is detected in the test channel (d). Scale bar is 100 μm. (See Visualization 1)

Fig. 6
Fig. 6

Validation of the droplet generator, consisting in a 2D hydrodynamic focusing device. (a) Droplet formation with insertion pressure for oil and water respectively of 99 mBar and 76 mBar. (b) Droplet obtained with both pressures equal to 76 mBar. The scale bar is equal to 100 μm.

Fig. 7
Fig. 7

Schematic layout of the device for periodic light modulation: a droplet generator module (1), is used to create droplets of oil, which flow in the acylindrical lens (2), focusing the laser in the test channel (3). A fiber (4) is butt-coupled to the device.

Fig. 8
Fig. 8

Panels a, b and c show the device characterization performed at low flow rate to better observe the correspondence between the droplet generation and the light modulation. Droplets that periodically flow in the lens have been created (a), and the corresponding periodic modulation is observed in the sample channel (b), (see Visualization 3). Scale bar is 150 μm. Panel (c) shows the periodic modulation of the signal acquired with the digital oscilloscope. Panel (d) shows the result of the experiments performed at increasing droplet rates, reaching a value of about 60 Hz at the maximum pressure supplied by our pump system. Error bars are obtained by repeating each measurements three times.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d x = d s cos ( φ )
d y = d s sin ( φ )
n oil sin ( φ α 1 ) = n glass sin ( φ + α 2 ) .

Metrics