Abstract

We report a fiber-based lensless holographic imaging system to realize a single-shot measurement of two dimensional (2-D) Jones matrix parameters of polarization-sensitive materials. In this system, a multi-source lensless off-axis Fresnel holographic recording geometry is adopted, and two optical fiber splitters are used to generate the multiple reference and illumination beams required for recording a four-channel angular-multiplexing polarization hologram (AMPH). Using this system and the method described in this paper, spatially resolved Jones matrix parameters of a polarization-sensitive material can be retrieved from one single-shot AMPH. We demonstrate the feasibility of the method by extracting a 2-D Jones matrix of a composite polarizer. Applications of the method to measure the Jones matrix maps of a stressed polymethyl methacrylate sample and a mica fragment are also presented. Benefit from the fiber-based and lensless off-axis holographic design, the system possesses a quite compact configuration, which provides a feasible approach for development of an integrated and portable system to measure Jones matrix parameters of polarization-sensitive materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components

B. Hyle Park, Mark C. Pierce, Barry Cense, and Johannes F. de Boer
Opt. Lett. 29(21) 2512-2514 (2004)

Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation

Shuliang Jiao, Miloš Todorović, George Stoica, and Lihong V. Wang
Appl. Opt. 44(26) 5463-5467 (2005)

References

  • View by:
  • |
  • |
  • |

  1. M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
    [Crossref] [PubMed]
  2. A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
    [Crossref] [PubMed]
  3. D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
    [Crossref] [PubMed]
  4. C. Li and Y. Zhu, “Quantitative polarized light microscopy using spectral multiplexing interferometry,” Opt. Lett. 40(11), 2622–2625 (2015).
    [Crossref] [PubMed]
  5. K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999).
    [Crossref] [PubMed]
  6. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
    [Crossref] [PubMed]
  7. I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
    [Crossref]
  8. J. Korger, T. Kolb, P. Banzer, A. Aiello, C. Wittmann, C. Marquardt, and G. Leuchs, “The polarization properties of a tilted polarizer,” Opt. Express 21(22), 27032–27042 (2013).
    [Crossref] [PubMed]
  9. M. Yamauchi, “Jones-matrix models for twisted-nematic liquid-crystal devices,” Appl. Opt. 44(21), 4484–4493 (2005).
    [Crossref] [PubMed]
  10. M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
    [Crossref]
  11. F. Heismann, “Extended Jones matrix for first-order polarization mode dispersion,” Opt. Lett. 30(10), 1111–1113 (2005).
    [Crossref] [PubMed]
  12. J. P. B. Mueller, K. Leosson, and F. Capasso, “Polarization-selective coupling to long-range surface plasmon polariton waveguides,” Nano Lett. 14(10), 5524–5527 (2014).
    [Crossref] [PubMed]
  13. F. Massoumian, R. Juškaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
    [Crossref] [PubMed]
  14. S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
    [Crossref]
  15. R. Barakat, “Jones matrix equivalence theorems for polarization theory,” Eur. J. Phys. 19(3), 209–216 (1998).
    [Crossref]
  16. C. D. West and R. C. Jones, “On the properties of polarization elements as used in optical instruments. I. Fundamental considerations,” J. Opt. Soc. Am. 41(12), 976–982 (1951).
    [Crossref]
  17. J. C. Cotteverte, F. Bretenaker, and A. L. Floch, “Jones matrices of a tilted plate for Gaussian beams,” Appl. Opt. 30(3), 305–311 (1991).
    [Crossref] [PubMed]
  18. J. Poirson, T. Lanternier, J. C. Cotteverte, A. L. Floch, and F. Bretenaker, “Jones matrices of a quarter-wave plate for Gaussian beams,” Appl. Opt. 34(30), 6806–6818 (1995).
    [Crossref] [PubMed]
  19. I. Moreno, “Jones matrix for image-rotation prisms,” Appl. Opt. 43(17), 3373–3381 (2004).
    [Crossref] [PubMed]
  20. H. Wen, M. A. Terrel, H. K. Kim, M. J. F. Digonnet, and S. Fan, “Measurements of the birefringence and Verdet constant in an air-core fiber,” J. Lightwave Technol. 27(15), 3194–3201 (2009).
    [Crossref]
  21. C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
    [Crossref] [PubMed]
  22. C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48(4), 044002 (2009).
    [Crossref]
  23. I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, and M. J. Yzuel, “Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display,” Opt. Lett. 33(6), 627–629 (2008).
    [Crossref] [PubMed]
  24. M. Krüger, R. Kampmann, R. Kleindienst, and S. Sinzinger, “Time-resolved combination of the Mueller–Stokes and Jones calculus for the optimization of a twisted-nematic spatial-light modulator,” Appl. Opt. 54(13), 4239–4248 (2015).
    [Crossref]
  25. T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
    [Crossref]
  26. T. Khos-Ochir, P. Munkhbaatar, B. K. Yang, H. W. Kim, J. S. Kim, and K. Myung-Whun, “Polarimetric measurement of Jones matrix of a twisted nematic liquid crystal spatial light modulator,” J. Opt. Soc. Korea 16(4), 443–448 (2012).
    [Crossref]
  27. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [Crossref] [PubMed]
  28. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [Crossref] [PubMed]
  29. J. Park, H. Yu, J. H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
    [Crossref] [PubMed]
  30. X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
    [Crossref] [PubMed]
  31. T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
    [Crossref] [PubMed]
  32. V. Aparna, N. K. Soni, R. V. Vinu, and R. K. Singh, “Anisotropy imaging using polarization and angular multiplexing,” Proc. SPIE10074, 10074 (2017).
  33. E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
    [Crossref] [PubMed]
  34. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
    [Crossref]
  35. N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42(1), 73–76 (2017).
    [Crossref] [PubMed]
  36. F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
    [Crossref]
  37. P. Cai, J. Wang, C. Wang, P. Zeng, and H. Li, “Polarization conversions of diffractive wave plates based on orthogonal circular-polarization holography,” Chin. Opt. Lett. 14(1), 010009 (2016).
    [Crossref]
  38. J. P. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
    [Crossref]

2017 (1)

2016 (3)

2015 (4)

M. Krüger, R. Kampmann, R. Kleindienst, and S. Sinzinger, “Time-resolved combination of the Mueller–Stokes and Jones calculus for the optimization of a twisted-nematic spatial-light modulator,” Appl. Opt. 54(13), 4239–4248 (2015).
[Crossref]

C. Li and Y. Zhu, “Quantitative polarized light microscopy using spectral multiplexing interferometry,” Opt. Lett. 40(11), 2622–2625 (2015).
[Crossref] [PubMed]

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

2014 (4)

2013 (2)

2012 (3)

2011 (1)

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

2009 (3)

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48(4), 044002 (2009).
[Crossref]

A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
[Crossref] [PubMed]

H. Wen, M. A. Terrel, H. K. Kim, M. J. F. Digonnet, and S. Fan, “Measurements of the birefringence and Verdet constant in an air-core fiber,” J. Lightwave Technol. 27(15), 3194–3201 (2009).
[Crossref]

2008 (3)

2007 (1)

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

2005 (2)

2004 (1)

2003 (2)

F. Massoumian, R. Juškaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[Crossref]

2002 (1)

1999 (1)

K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999).
[Crossref] [PubMed]

1998 (1)

R. Barakat, “Jones matrix equivalence theorems for polarization theory,” Eur. J. Phys. 19(3), 209–216 (1998).
[Crossref]

1997 (1)

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

1995 (1)

1991 (1)

1951 (1)

Afshinmanesh, F.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Aiello, A.

Amunts, K.

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

Anastasiadou, M.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Aparna, V.

V. Aparna, N. K. Soni, R. V. Vinu, and R. K. Singh, “Anisotropy imaging using polarization and angular multiplexing,” Proc. SPIE10074, 10074 (2017).

Axer, M.

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

Banzer, P.

Barakat, R.

R. Barakat, “Jones matrix equivalence theorems for polarization theory,” Eur. J. Phys. 19(3), 209–216 (1998).
[Crossref]

Beghuin, D.

Bolton, J. P.

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

Brasselet, S.

A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
[Crossref] [PubMed]

Bretenaker, F.

Brongersma, M. L.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Cai, P.

Cai, W.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Campos, J.

Capasso, F.

J. P. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
[Crossref]

J. P. B. Mueller, K. Leosson, and F. Capasso, “Polarization-selective coupling to long-range surface plasmon polariton waveguides,” Nano Lett. 14(10), 5524–5527 (2014).
[Crossref] [PubMed]

Cho, B. R.

A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
[Crossref] [PubMed]

Choi, M. C.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Choi, Y.

Clement, D.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Cohen, H.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Colomb, T.

Cotteverte, J. C.

Cuche, E.

Dahlgren, P.

De Raedt, H.

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

Depeursinge, C.

Digonnet, M. J. F.

Doblas, A.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Dreyfuss, J.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Fan, S.

Favard, C.

A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
[Crossref] [PubMed]

Fernández-Pousa, C. R.

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[Crossref]

Floch, A. L.

Garcia-Sucerquia, J.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Gasecka, A.

A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
[Crossref] [PubMed]

Gillette, M. U.

Guo, C. S.

Haffegee, J.

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

Haist, T.

C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
[Crossref] [PubMed]

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48(4), 044002 (2009).
[Crossref]

Hammar, K.

K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999).
[Crossref] [PubMed]

Han, T. J.

A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
[Crossref] [PubMed]

Heismann, F.

Ho, M. W.

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

Huynh, B.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Iemmi, C.

Jang, J.

Jeong, J.

Jones, R. C.

Jung, H. T.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Juškaitis, R.

F. Massoumian, R. Juškaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Kampmann, R.

Kang, Y. G.

Katoh, K.

K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999).
[Crossref] [PubMed]

Khos-Ochir, T.

Kim, B. M.

Kim, H. K.

Kim, H. W.

Kim, J. S.

Kim, M. W.

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Kim, Y.

Kim, Y. H.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Kleindienst, R.

Knight, D.

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

Kohler, C.

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48(4), 044002 (2009).
[Crossref]

Kolb, T.

Koppa, P.

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

Korger, J.

Krüger, M.

Lanternier, T.

Laude Boulesteix, B.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Lavrentovich, O. D.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Lee, K. J.

Leosson, K.

J. P. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
[Crossref]

J. P. B. Mueller, K. Leosson, and F. Capasso, “Polarization-selective coupling to long-range surface plasmon polariton waveguides,” Nano Lett. 14(10), 5524–5527 (2014).
[Crossref] [PubMed]

Leuchs, G.

Li, C.

Li, H.

Liège, F.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Lingel, C.

Liu, X.

Lizana, A.

Marquardt, C.

Marquet, P.

Márquez, A.

Martínez-Corral, M.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Martino, A. D.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Massoumian, F.

F. Massoumian, R. Juškaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Mateos, F.

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[Crossref]

Menzel, M.

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

Michielsen, K.

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

Millet, L. J.

Moreno, I.

Mueller, J. P. B.

J. P. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
[Crossref]

J. P. B. Mueller, K. Leosson, and F. Capasso, “Polarization-selective coupling to long-range surface plasmon polariton waveguides,” Nano Lett. 14(10), 5524–5527 (2014).
[Crossref] [PubMed]

Munkhbaatar, P.

Myung-Whun, K.

Nazac, A.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Neil, M. A. A.

F. Massoumian, R. Juškaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Newton, R.

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

Oldenbourg, R.

K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999).
[Crossref] [PubMed]

Osten, W.

C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
[Crossref] [PubMed]

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48(4), 044002 (2009).
[Crossref]

Park, J.

Park, J. H.

Park, K.

Park, Y.

Poirson, J.

Popescu, G.

Quang, N.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Reckfort, J.

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

Ross, S.

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

Saavedra, G.

Sánchez-López, M. M.

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[Crossref]

Sánchez-Ortiga, E.

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

Sarkadi, T.

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

Schwartz, L.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Shaked, N. T.

Singh, R. K.

V. Aparna, N. K. Soni, R. V. Vinu, and R. K. Singh, “Anisotropy imaging using polarization and angular multiplexing,” Proc. SPIE10074, 10074 (2017).

Sinzinger, S.

Smith, P. J. S.

K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999).
[Crossref] [PubMed]

Soni, N. K.

V. Aparna, N. K. Soni, R. V. Vinu, and R. K. Singh, “Anisotropy imaging using polarization and angular multiplexing,” Proc. SPIE10074, 10074 (2017).

Terrel, M. A.

Turko, N. A.

Velásquez, P.

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[Crossref]

Vinu, R. V.

V. Aparna, N. K. Soni, R. V. Vinu, and R. K. Singh, “Anisotropy imaging using polarization and angular multiplexing,” Proc. SPIE10074, 10074 (2017).

Wang, B. Y.

Wang, C.

Wang, J.

Wang, Z.

Wen, H.

West, C. D.

White, J. S.

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Wilson, T.

F. Massoumian, R. Juškaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

Wittmann, C.

Yamauchi, M.

Yang, B. K.

Yang, T. D.

Yoon, D. K.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Yu, H.

Yzuel, M. J.

Zeng, P.

Zhou, Y. M.

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

Zhu, Y.

Appl. Opt. (8)

J. C. Cotteverte, F. Bretenaker, and A. L. Floch, “Jones matrices of a tilted plate for Gaussian beams,” Appl. Opt. 30(3), 305–311 (1991).
[Crossref] [PubMed]

J. Poirson, T. Lanternier, J. C. Cotteverte, A. L. Floch, and F. Bretenaker, “Jones matrices of a quarter-wave plate for Gaussian beams,” Appl. Opt. 34(30), 6806–6818 (1995).
[Crossref] [PubMed]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

I. Moreno, “Jones matrix for image-rotation prisms,” Appl. Opt. 43(17), 3373–3381 (2004).
[Crossref] [PubMed]

M. Yamauchi, “Jones-matrix models for twisted-nematic liquid-crystal devices,” Appl. Opt. 44(21), 4484–4493 (2005).
[Crossref] [PubMed]

C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
[Crossref] [PubMed]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[Crossref] [PubMed]

M. Krüger, R. Kampmann, R. Kleindienst, and S. Sinzinger, “Time-resolved combination of the Mueller–Stokes and Jones calculus for the optimization of a twisted-nematic spatial-light modulator,” Appl. Opt. 54(13), 4239–4248 (2015).
[Crossref]

Biophys. J. (1)

A. Gasecka, T. J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fluorescence polarimetry,” Biophys. J. 97(10), 2854–2862 (2009).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

Eur. J. Phys. (1)

R. Barakat, “Jones matrix equivalence theorems for polarization theory,” Eur. J. Phys. 19(3), 209–216 (1998).
[Crossref]

J. Appl. Phys. (1)

I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (2)

F. Massoumian, R. Juškaitis, M. A. A. Neil, and T. Wilson, “Quantitative polarized light microscopy,” J. Microsc. 209(1), 13–22 (2003).
[Crossref] [PubMed]

S. Ross, R. Newton, Y. M. Zhou, J. Haffegee, M. W. Ho, J. P. Bolton, and D. Knight, “Quantitative image analysis of birefringent biological material,” J. Microsc. 187(1), 62–67 (1997).
[Crossref]

J. Opt. (1)

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (1)

J. R. Soc. Interface (1)

M. Menzel, K. Michielsen, H. De Raedt, J. Reckfort, K. Amunts, and M. Axer, “A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue,” J. R. Soc. Interface 12(111), 20150734 (2015).
[Crossref] [PubMed]

Mol. Biol. Cell (1)

K. Katoh, K. Hammar, P. J. S. Smith, and R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10(1), 197–210 (1999).
[Crossref] [PubMed]

Nano Lett. (1)

J. P. B. Mueller, K. Leosson, and F. Capasso, “Polarization-selective coupling to long-range surface plasmon polariton waveguides,” Nano Lett. 14(10), 5524–5527 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma, “Measurement of the polarization state of light using an integrated plasmonic polarimeter,” Nanophotonics 1(2), 125–129 (2012).
[Crossref]

Nat. Mater. (1)

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H. T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, and J. Garcia-Sucerquia, “Study of spatial lateral resolution in off-axis digital holographic microscopy,” Opt. Commun. 352, 63–69 (2015).
[Crossref]

Opt. Eng. (1)

C. Kohler, T. Haist, and W. Osten, “Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays,” Opt. Eng. 48(4), 044002 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (1)

Phys. Status Solidi (1)

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(55c), 1423–1426 (2008).
[Crossref]

Other (1)

V. Aparna, N. K. Soni, R. V. Vinu, and R. K. Singh, “Anisotropy imaging using polarization and angular multiplexing,” Proc. SPIE10074, 10074 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. (b) Structure of the Fiber holders.

Fig. 2
Fig. 2

Recording geometry of the fiber-based off-axis Fresnel holographic system.

Fig. 3
Fig. 3

Photograph of the experimental setup.

Fig. 4
Fig. 4

(a) Example of an AMPH recorded in our experiments; (b) zoom-in image of the rectangular areas of the hologram shown in (a); (c) spatial frequency of the AMPH.

Fig. 5
Fig. 5

Measured Jones matrix parameters of the composite polarizer, from left to right: J xx , J xy , J yx , and J yy . (a) and (b) are, respectively, the amplitude and phase maps measured in experiments; (c) and (d) are the corresponding amplitude and phase maps by theoretical calculation. The scale bar is the same in all images.

Fig. 6
Fig. 6

Stressed PMMA sample. The circle is the illuminated area.

Fig. 7
Fig. 7

Measurement results for the PMMA sample. (a)-(d) are, respectively, the amplitude maps of the Jones matrix parameters J xx , J xy , J yx , and J yy ; (e)-(h) are the corresponding phase maps. The scale bar is the same in all images.

Fig. 8
Fig. 8

Experimental results for the mica sample. (a)-(d) are, respectively, the amplitude maps of the measured Jones matrix parameters J xx , J xy , J yx , and J yy ; (e)-(h) are the corresponding phase maps. (i) and (j) are the phase maps of the two eigenvalues; (k) is the phase retardation map between the two eigenvector directions.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

J( x o , y o )=[ J xx ( x o , y o ) J xy ( x o , y o ) J yx ( x o , y o ) J yy ( x o , y o ) ],
O( x o , y o )= O 1 ( x o , y o ) O 2 ( x o , y o ) =exp[ iπ λd ( x o 2 + y o 2 )]{ A 1 [ J xx +i J xy J yx +i J yy ] A 2 [ J xx i J xy J yx i J yy ] },
O z (x,y)=F r z { O( x o , y o ) },
O z (x,y)= O 1z (x,y) O 2z (x,y) =[ A 1 ( J xx +i J xy ) A 1 ( J yx +i J yy ) ][ A 2 ( J xx i J xy ) A 2 ( J yx i J yy ) ],
J xx =F r z { J xx exp[ iπ λd ( x o 2 + y o 2 )]}, J xy =F r z { J xy exp[ iπ λd ( x o 2 + y o 2 )]} J yx =F r z { J yx exp[ iπ λd ( x o 2 + y o 2 )]}, J yy =F r z { J yy exp[ iπ λd ( x o 2 + y o 2 )]} .
R mn (x,y)=| R mn (x,y) | ×exp{ iπ λ(z+d) [ (x x mn ) 2 + (y y mn ) 2 ], (m,n=1,2) .
I= | [ O 1 z x O 1 z y ]+ R 11 [ 1 0 ]+ R 12 [ 0 1 ] | 2 + | [ O 2 z x O 2 z y ]+ R 21 [ 1 0 ]+ R 22 [ 0 1 ] | 2 = I 0 + Y 11 + Y 12 + Y 21 + Y 22 + Y 11 * + Y 12 * + Y 21 * + Y 22 * ,
I 0 = | O 1 z x | 2 + | O 1 z y | 2 + | O 2 z x | 2 + | O 2 z y | 2 + | R 11 | 2 + | R 21 | 2 + | R 12 | 2 + | R 22 | 2 ,
Y 11 = A 1 R 11 * ( J xx +i J xy ), Y 12 = A 1 R 12 * ( J yx +i J yy ) Y 21 = A 2 R 21 * ( J xx i J xy ), Y 22 = A 2 R 22 * ( J yx i J yy ) .
Y 11 = A 1 R 11 * ( J xx +i J xy ) = A 1 R 11 * F r z {( J xx +i J xy )exp[ iπ λd ( x o 2 + y o 2 )]} = A 1 | R 11 |exp[ iπ λ(z+d) ( x 11 2 + y 11 2 )]exp[ i2π λ(z+d) ( x 11 x+ y 11 y )] ×exp[ iπd λz(z+d) ( x 2 + y 2 )] ( J xx +i J xy ) ×exp[ iπ λ ( 1 d + 1 z )( x o 2 + y o 2 )]exp[ i2π λz (x x o +y y o )]d x o d y o .
Y 11 = A 1 | R 11 | [ J xx ( x o , y o ) +i J xy ( x o , y o )]exp{ iπd λz(z+d) ×[ (x z+d d x o ) 2 + (y z+d d y o ) 2 ]}d x o d y o = ( d z+d ) 2 A 1 | R 11 | [ J xx ( x 0 M , y 0 M )+i J xy ( x 0 M , y 0 M ) ] ×exp{ iπd λz(z+d) [ (x x 0 ) 2 + (y y 0 ) 2 ]}d x 0 d y 0 = C 11 F r z i { J xx ( x i , y i )+i J xy ( x i , y i )}.
Y 11 = J xx +i J xy =IF r z i { Y 11 C 11 },
Y 12 = J yx +i J yy =IF r z i { Y 12 C 12 } Y 21 = J xx i J xy =IF r z i { Y 21 C 21 }, Y 22 = J yx i J yy =IF r z i { Y 22 C 22 }
J xx = 1 2 ( Y 11 + Y 21 ), J xy = i 2 ( Y 11 Y 21 ) J yx = i 2 ( Y 12 Y 22 ), J yy = 1 2 ( Y 12 + Y 22 ) .

Metrics