Abstract

In this work, comparative long-wave infrared (LWIR) laser-induced breakdown spectroscopy (LIBS) emission studies of two excitation sources: conventional 1.064 μm and eye-safe laser wavelength at 1.574 μm were performed to analyze several widely-used inorganic energetic materials such as ammonium and potassium compounds as well as the organic liquid chemical warfare agent simulant, dimethyl methylphosphate (DMMP). LWIR LIBS emissions generated by both excitation sources were examined using three different detection systems: a single element liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector, an MCT linear array detection system with multi-channel preamplifiers + integrators, and an MCT linear array detection system with readout integrated circuit. It was observed that LWIR LIBS studies using an eye-safe pump laser generally reproduced atomic and molecular IR LIBS spectra as previously observed under 1.064 µm laser excitation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system

Clayton S.-C. Yang, Eiei Brown, Eric Kumi-Barimah, Uwe Hommerich, Feng Jin, Yingqing Jia, Sudhir Trivedi, Arvind I. D’souza, Eric A. Decuir, Priyalal S. Wijewarnasuriya, and Alan C. Samuels
Appl. Opt. 54(33) 9695-9702 (2015)

Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury–cadmium–telluride linear array detection system

Clayton S.-C. Yang, Feng Jin, Sudhir Trivedi, Eiei Brown, Uwe Hommerich, Jacob B. Khurgin, and Alan C. Samuels
Appl. Opt. 55(32) 9166-9172 (2016)

Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 μm

Diane M. Wong and Paul J. Dagdigian
Appl. Opt. 47(31) G149-G157 (2008)

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Yueh, J. P. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of analytical chemistry: applications, theory, and instrumentation. R. A. Meyers, ed. (John Wiley & Sons Ltd. Chichester, 2000), pp. 2066–2088.
  2. C. G. Parigger, “Atomic and molecular emissions in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79–80, 4–16 (2013).
    [Crossref]
  3. R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
    [Crossref]
  4. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley, 2006.
  5. S. Rai and A. K. Rai, “Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LINS signals,” AIP Adv. 1(4), 042103 (2011).
    [Crossref]
  6. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
    [Crossref] [PubMed]
  7. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
    [Crossref] [PubMed]
  8. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42(30), 6221–6225 (2003).
    [Crossref] [PubMed]
  9. F. C. De Lucia and J. L. Gottfried, “Rapid analysis of energetic and geo-materials using LIBS,” Mater. Today 14(6), 274–281 (2011).
    [Crossref]
  10. S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20(5-6), 455–462 (2000).
    [Crossref]
  11. F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
    [Crossref]
  12. J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
    [Crossref]
  13. A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).
  14. S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
    [Crossref]
  15. E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
    [Crossref]
  16. C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
    [Crossref] [PubMed]
  17. C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
    [Crossref] [PubMed]
  18. C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).
  19. C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).
  20. C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
    [Crossref] [PubMed]
  21. E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
    [Crossref]
  22. C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
    [Crossref] [PubMed]
  23. C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
    [Crossref] [PubMed]
  24. C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
    [Crossref] [PubMed]
  25. E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
    [Crossref]
  26. C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).
  27. C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).
  28. J. Hecht, “Eye-safe lasers: Retina-safe wavelengths benefit open-air applications,” Laser Focus World 44(3), 89–92 (2008).
  29. S. E. Stein, in NIST Chemistry WebBook; W.G Mallard, P.J. Linstrom, Eds.; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD.
  30. F. A. Miller and C. H. Wilkins, “Infrared Spectra and Characteristic Frequencies of Inorganic Ions,” Anal. Chem. 24(8), 1253–1294 (1952).
    [Crossref]
  31. S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
    [Crossref]
  32. D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 microm,” Appl. Opt. 47(31), G149–G157 (2008).
    [Crossref] [PubMed]
  33. J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of potassium (Kl through KXlX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
    [Crossref]
  34. Y. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kramida, and A. Musgrove, J. Reader, W. L. Wiese, and K. Olson,in NIST Atomic Spectra Database (version 3.1.1), Gaithersburg, MD, 2007, http://physics.nist.gov/asd3 .
  35. R. Ylmén and U. Jaglid, “Carbonation of portland cement studied by diffuse reflection Fourier Transform Infrared Spectroscopy,” Int. J. Concrete Struct. Mater. 7(2), 119–125 (2013).
    [Crossref]
  36. H. Bakare, A. Esan, and O. Olabemiwo, “Characterization of Agbabu natural bitumen and its fractions using Fourier Transform Infrared Spectroscopy,” Chem. Mater. Res. 7, 1–11 (2015).
  37. J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
    [Crossref] [PubMed]
  38. V. M. Bermudez, “Effect of humidity on the interaction of Dimethyl Methylphosphonate (DMMP) vapor with SiO2 and Al2O3 surfaces, studied using infrared attenuated total reflection spectroscopy,” Langmuir 26(23), 18144–18154 (2010).
    [Crossref] [PubMed]

2016 (3)

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (4)

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

R. Ylmén and U. Jaglid, “Carbonation of portland cement studied by diffuse reflection Fourier Transform Infrared Spectroscopy,” Int. J. Concrete Struct. Mater. 7(2), 119–125 (2013).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
[Crossref]

C. G. Parigger, “Atomic and molecular emissions in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79–80, 4–16 (2013).
[Crossref]

2012 (1)

2011 (3)

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

F. C. De Lucia and J. L. Gottfried, “Rapid analysis of energetic and geo-materials using LIBS,” Mater. Today 14(6), 274–281 (2011).
[Crossref]

S. Rai and A. K. Rai, “Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LINS signals,” AIP Adv. 1(4), 042103 (2011).
[Crossref]

2010 (2)

S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
[Crossref]

V. M. Bermudez, “Effect of humidity on the interaction of Dimethyl Methylphosphonate (DMMP) vapor with SiO2 and Al2O3 surfaces, studied using infrared attenuated total reflection spectroscopy,” Langmuir 26(23), 18144–18154 (2010).
[Crossref] [PubMed]

2008 (5)

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 microm,” Appl. Opt. 47(31), G149–G157 (2008).
[Crossref] [PubMed]

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of potassium (Kl through KXlX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
[Crossref]

J. Hecht, “Eye-safe lasers: Retina-safe wavelengths benefit open-air applications,” Laser Focus World 44(3), 89–92 (2008).

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).

2007 (2)

C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

2006 (1)

A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

2005 (2)

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

2003 (3)

2000 (1)

S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20(5-6), 455–462 (2000).
[Crossref]

1988 (1)

J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
[Crossref] [PubMed]

1952 (1)

F. A. Miller and C. H. Wilkins, “Infrared Spectra and Characteristic Frequencies of Inorganic Ions,” Anal. Chem. 24(8), 1253–1294 (1952).
[Crossref]

Bakare, H.

H. Bakare, A. Esan, and O. Olabemiwo, “Characterization of Agbabu natural bitumen and its fractions using Fourier Transform Infrared Spectroscopy,” Chem. Mater. Res. 7, 1–11 (2015).

Bermudez, V. M.

V. M. Bermudez, “Effect of humidity on the interaction of Dimethyl Methylphosphonate (DMMP) vapor with SiO2 and Al2O3 surfaces, studied using infrared attenuated total reflection spectroscopy,” Langmuir 26(23), 18144–18154 (2010).
[Crossref] [PubMed]

Bowen, J. M.

J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
[Crossref] [PubMed]

Brown, E.

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
[Crossref] [PubMed]

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).

Brown, E. E.

Buckley, S. G.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20(5-6), 455–462 (2000).
[Crossref]

Dagdigian, P. J.

De Lucia, F. C.

F. C. De Lucia and J. L. Gottfried, “Rapid analysis of energetic and geo-materials using LIBS,” Mater. Today 14(6), 274–281 (2011).
[Crossref]

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Decuir, E.

DeLucia, F. C.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[Crossref] [PubMed]

Esan, A.

H. Bakare, A. Esan, and O. Olabemiwo, “Characterization of Agbabu natural bitumen and its fractions using Fourier Transform Infrared Spectroscopy,” Chem. Mater. Res. 7, 1–11 (2015).

French, P. D.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Gottfried, J. L.

F. C. De Lucia and J. L. Gottfried, “Rapid analysis of energetic and geo-materials using LIBS,” Mater. Today 14(6), 274–281 (2011).
[Crossref]

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Hahn, D. W.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20(5-6), 455–462 (2000).
[Crossref]

Harmon, R. S.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Hecht, J.

J. Hecht, “Eye-safe lasers: Retina-safe wavelengths benefit open-air applications,” Laser Focus World 44(3), 89–92 (2008).

Hencken, K. R.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20(5-6), 455–462 (2000).
[Crossref]

Hommerich, U.

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
[Crossref] [PubMed]

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

Hommerich, U. H.

Hömmerich, U.

E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
[Crossref]

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

Hounslow, A. W.

J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
[Crossref] [PubMed]

Jagatap, B. N.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

Jaglid, U.

R. Ylmén and U. Jaglid, “Carbonation of portland cement studied by diffuse reflection Fourier Transform Infrared Spectroscopy,” Int. J. Concrete Struct. Mater. 7(2), 119–125 (2013).
[Crossref]

Jia, Y.

Jin, F.

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
[Crossref]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[Crossref] [PubMed]

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
[Crossref] [PubMed]

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).

Johnsen, H. A.

S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20(5-6), 455–462 (2000).
[Crossref]

Kalam, S. A.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

Khurgin, J. B.

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

Kiran, P. P.

S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
[Crossref]

Kumar, G. M.

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
[Crossref]

S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
[Crossref]

Kumi Barimah, E.

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

Kumi-Barimah, E.

LaPointe, A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Mathi, P.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

McNesby, K. L.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[Crossref] [PubMed]

Miller, F. A.

F. A. Miller and C. H. Wilkins, “Infrared Spectra and Characteristic Frequencies of Inorganic Ions,” Anal. Chem. 24(8), 1253–1294 (1952).
[Crossref]

Miziolek, A. J.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Miziolek, A. W.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[Crossref] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Noll, R.

Olabemiwo, O.

H. Bakare, A. Esan, and O. Olabemiwo, “Characterization of Agbabu natural bitumen and its fractions using Fourier Transform Infrared Spectroscopy,” Chem. Mater. Res. 7, 1–11 (2015).

Parigger, C. G.

C. G. Parigger, “Atomic and molecular emissions in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79–80, 4–16 (2013).
[Crossref]

Powers, C. R.

J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
[Crossref] [PubMed]

Rai, A. K.

S. Rai and A. K. Rai, “Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LINS signals,” AIP Adv. 1(4), 042103 (2011).
[Crossref]

Rai, S.

S. Rai and A. K. Rai, “Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LINS signals,” AIP Adv. 1(4), 042103 (2011).
[Crossref]

Rao, E. N.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
[Crossref]

Rao, S. V.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
[Crossref]

S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
[Crossref]

Ratcliffe, A. E.

J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
[Crossref] [PubMed]

Rockley, M. G.

J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
[Crossref] [PubMed]

Samuels, A. C.

E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
[Crossref]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[Crossref] [PubMed]

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
[Crossref] [PubMed]

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).

C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

Samuels, A.C.

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

Sansonetti, J. E.

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of potassium (Kl through KXlX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
[Crossref]

Singh, A. K.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

Snyder, A. P.

C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[Crossref] [PubMed]

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
[Crossref] [PubMed]

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).

C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

Snyder, A.P.

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

Sreedhar, S.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
[Crossref]

S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
[Crossref]

Sturm, V.

Tewari, S. P.

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
[Crossref]

S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
[Crossref]

Trivedi, S.

Trivedi, S. B.

E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
[Crossref]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[Crossref] [PubMed]

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
[Crossref] [PubMed]

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S. C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

Walters, R.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Walters, R. A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Whitehouse, A.

A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

Wijewarnasuriya, P.

Wijewarnasuriya, P. S.

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

Wilkins, C. H.

F. A. Miller and C. H. Wilkins, “Infrared Spectra and Characteristic Frequencies of Inorganic Ions,” Anal. Chem. 24(8), 1253–1294 (1952).
[Crossref]

Winkel, R. J.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Wong, D. M.

Yang, C. C.

E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
[Crossref]

Yang, C. S. C.

Yang, C. S.C.

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

Yang, C. S.-C.

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[Crossref] [PubMed]

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

C. S.-C. Yang, E. E. Brown, U. Hommerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials,” Appl. Spectrosc. 66(12), 1397–1402 (2012).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

Ylmén, R.

R. Ylmén and U. Jaglid, “Carbonation of portland cement studied by diffuse reflection Fourier Transform Infrared Spectroscopy,” Int. J. Concrete Struct. Mater. 7(2), 119–125 (2013).
[Crossref]

AIP Adv. (1)

S. Rai and A. K. Rai, “Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LINS signals,” AIP Adv. 1(4), 042103 (2011).
[Crossref]

Anal. Chem. (1)

F. A. Miller and C. H. Wilkins, “Infrared Spectra and Characteristic Frequencies of Inorganic Ions,” Anal. Chem. 24(8), 1253–1294 (1952).
[Crossref]

Appl. Opt. (6)

D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 microm,” Appl. Opt. 47(31), G149–G157 (2008).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. Decuir, P. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy (LIBS) measurements using a mercury-cadmium-telluride focal plane array detection system,” Appl. Opt. 54, 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy (LIBS) of inorganic energetic materials by a rapid mercury-cadmium-telluride (MCT) linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42(30), 6205–6209 (2003).
[Crossref] [PubMed]

V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42(30), 6221–6225 (2003).
[Crossref] [PubMed]

Appl. Spectrosc. (4)

Chem. Mater. Res. (1)

H. Bakare, A. Esan, and O. Olabemiwo, “Characterization of Agbabu natural bitumen and its fractions using Fourier Transform Infrared Spectroscopy,” Chem. Mater. Res. 7, 1–11 (2015).

Environ. Sci. Technol. (1)

J. M. Bowen, C. R. Powers, A. E. Ratcliffe, M. G. Rockley, and A. W. Hounslow, “Fourier Transform Infrared and Raman spectra of Dimethyl Methylphosphonate adsorbed on montmorillonite,” Environ. Sci. Technol. 22(10), 1178–1181 (1988).
[Crossref] [PubMed]

Geochem. Explor. Environ. Anal. (1)

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

IEEE Sens. J. (1)

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. J. Miziolek, “Laser-Induced Breakdown Spectroscopy (LIBS): A promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005).
[Crossref]

Int. J. Concrete Struct. Mater. (1)

R. Ylmén and U. Jaglid, “Carbonation of portland cement studied by diffuse reflection Fourier Transform Infrared Spectroscopy,” Int. J. Concrete Struct. Mater. 7(2), 119–125 (2013).
[Crossref]

J. Anal. Atom. Spectrosc. (1)

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data,” J. Anal. Atom. Spectrosc. 31(3), 737–750 (2016).
[Crossref]

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of potassium (Kl through KXlX),” J. Phys. Chem. Ref. Data 37(1), 7–96 (2008).
[Crossref]

Langmuir (1)

V. M. Bermudez, “Effect of humidity on the interaction of Dimethyl Methylphosphonate (DMMP) vapor with SiO2 and Al2O3 surfaces, studied using infrared attenuated total reflection spectroscopy,” Langmuir 26(23), 18144–18154 (2010).
[Crossref] [PubMed]

Laser Focus World (1)

J. Hecht, “Eye-safe lasers: Retina-safe wavelengths benefit open-air applications,” Laser Focus World 44(3), 89–92 (2008).

Mater. Today (1)

F. C. De Lucia and J. L. Gottfried, “Rapid analysis of energetic and geo-materials using LIBS,” Mater. Today 14(6), 274–281 (2011).
[Crossref]

Proc. SPIE (4)

E. Kumi Barimah, U. Hömmerich, E. Brown, C. S.-C. Yang, S. B. Trivedi, F. Jin, P. S. Wijewarnasuriya, A. C. Samuels, and A. P. Snyder, “Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy,” Proc. SPIE 8710, 87100V (2013).
[Crossref]

C. S.C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A.C. Samuels, and A.P. Snyder, “Infrared laser-induced breakdown spectroscopy from energetic materials,” Proc. SPIE 8018, 80181P1 (2011).

E. E. Brown, U. Hömmerich, C. C. Yang, F. Jin, S. B. Trivedi, and A. C. Samuels, “Eye-safe infrared laser-induced breakdown spectroscopy emissions from energetic materials,” Proc. SPIE 9824, 98241B (2016).
[Crossref]

S. Sreedhar, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, “Stoichiometric analysis of ammonium nitrate and ammonium perchlorate with nanosecond laser induced breakdown spectroscopy,” Proc. SPIE 7665, 76650J (2010).
[Crossref]

Spectrochim. Acta B (1)

S. Sreedhar, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown,” Spectrochim. Acta B 87, 121–129 (2013).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (2)

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

C. G. Parigger, “Atomic and molecular emissions in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 79–80, 4–16 (2013).
[Crossref]

Spectroscopy (1)

C. S. C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Atomic and molecular emissions observed from mid-infrared laser-induced breakdown spectroscopy,” Spectroscopy 23, 29–32 (2008).

Spectroscopy Europe (1)

A. Whitehouse, “Laser-induced breakdown spectroscopy and its applications to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

Waste Manag. (1)

S. G. Buckley, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manag. 20(5-6), 455–462 (2000).
[Crossref]

Other (6)

F. Y. Yueh, J. P. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of analytical chemistry: applications, theory, and instrumentation. R. A. Meyers, ed. (John Wiley & Sons Ltd. Chichester, 2000), pp. 2066–2088.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley, 2006.

Y. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kramida, and A. Musgrove, J. Reader, W. L. Wiese, and K. Olson,in NIST Atomic Spectra Database (version 3.1.1), Gaithersburg, MD, 2007, http://physics.nist.gov/asd3 .

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Long-wave infrared (LWIR) molecular laser-induced breakdown spectroscopy (LIBS) emissions of thin solid explosive powder films deposited on aluminum substrates,” Appl. Spectrosc. (to be published).

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, S. B. Trivedi, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” U. S. Army Edgewood Chemical and Biological Center Report (to be published).

S. E. Stein, in NIST Chemistry WebBook; W.G Mallard, P.J. Linstrom, Eds.; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic diagram of the experimental setup for the LWIR LIBS studies using MCT single element point detection.

Fig. 2
Fig. 2

LWIR LIBS emission spectra of ammonium nitrate and ammonium perchlorate pellets under 1.064 µm (grey dashed lines) and eye-safe laser at 1.574 µm (black solid lines) excitation. The FTIR absorption spectra are shown as dotted lines.

Fig. 3
Fig. 3

LWIR LIBS emission spectra of (a) potassium nitrate (KNO3), (b) potassium chlorate (KClO3), (c) sodium nitrate (NaNO3), and sodium perchlorate (NaClO3), pellets under 1.064 µm (grey solid lines) and eye-safe laser at 1.574 µm (black solid lines) excitation. The FTIR absorption spectra are shown as dotted lines.

Fig. 4
Fig. 4

LWIR LIBS emission spectra of calcium carbonate (CaCO3, limestone) (black solid lines) along with FTIR absorption spectra of limestone (black dotted line) and bitumen (grey dotted line). LWIR LIBS emission spectra of bare asphalt substrates under 1.064 µm (grey dashed lines) and 1.574 µm (black dashed lines) pumping are also depicted.

Fig. 5
Fig. 5

LWIR LIBS emission spectra of (a) potassium chlorate and (b) potassium perchlorate films on asphalt substrates under 1.064 µm (grey solid lines) and eye-safe laser at 1.574 µm (black solid lines) excitation. The FTIR absorption spectra of corresponding potassium compounds are shown as dotted lines.

Fig. 6
Fig. 6

LWIR LIBS emission spectra of thin liquid DMMP film on the asphalt substrates (solid black lines) and bare asphalt substrates (grey solid lines) using 1.064 µm and eye-safe laser at 1.574 µm excitation. The FTIR absorption spectra of DMMP and limestone are shown as dotted lines and dashed lines, respectively.

Fig. 7
Fig. 7

A schematic diagram of the experimental setup for the LWIR LIBS studies using MCT multi-channel array detection system.

Fig. 8
Fig. 8

LWIR LIBS emission spectra of potassium compounds pellets recorded by a MCT array detector system and integrated over only 5-10 laser pulses.

Fig. 9
Fig. 9

LWIR LIBS emission spectra of KNO3 pellets over the spectral range between 5.6 to 10 µm using the ROIC MCT linear array detection system with a (a) 1.064 µm and (b) eye-safe laser 1.574 µm excitation.

Metrics